{"title":"Optimum Stiffener Design to Reduce Broadband Vibration and Sound Radiation","authors":"Dongjai Lee, A. Belegundu, G. Koopmann","doi":"10.1115/imece2001/nca-23527","DOIUrl":null,"url":null,"abstract":"\n This paper presents a rib-stiffener pattern design method for reducing vibration energy and/or radiated acoustic power from a vibrating structure. Structural dynamics, acoustics and optimization are programmed in a unified code. To avoid difficulties in defining proper design variables such as the location, the number and the size of stiffeners to be attached on a structure, this paper adopts the idea of “topology optimization”, based on finite elements. This approach enables one to find an optimal rib-stiffener pattern by using a simple design variable, e.g., the density of finite elements. To illustrate this method, a rectangular plate with clamped edges is optimized to reduce the radiated sound power/kinetic energy and the results are compared to that the same plate but without rib-stiffeners.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/nca-23527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a rib-stiffener pattern design method for reducing vibration energy and/or radiated acoustic power from a vibrating structure. Structural dynamics, acoustics and optimization are programmed in a unified code. To avoid difficulties in defining proper design variables such as the location, the number and the size of stiffeners to be attached on a structure, this paper adopts the idea of “topology optimization”, based on finite elements. This approach enables one to find an optimal rib-stiffener pattern by using a simple design variable, e.g., the density of finite elements. To illustrate this method, a rectangular plate with clamped edges is optimized to reduce the radiated sound power/kinetic energy and the results are compared to that the same plate but without rib-stiffeners.