What’s the Point? Using Extended Feature Sets For Semantic Segmentation in Point Clouds

Nina M. Varney, V. Asari
{"title":"What’s the Point? Using Extended Feature Sets For Semantic Segmentation in Point Clouds","authors":"Nina M. Varney, V. Asari","doi":"10.1109/AIPR47015.2019.9174600","DOIUrl":null,"url":null,"abstract":"A recent focus on expanding deep learning to use non-traditional input data has seen a high growth in research of deep learning on point sets. Due to its high collection cost and lack of available labeled data, there is an absence of research into deep learning with aerial LiDAR. In this paper, we present a new benchmark labeled dataset, called “Surrey Aerial 3 for evaluating networks on aerial LiDAR data”. The dataset covers over 6km2 and has three classes in multiple environments. We provide our architecture, “Curvature Weighted PointNet++” that eliminates PointNet++’s random batch selection and provides a way to select batches based on key points of interest selected from the Eigen feature space. We extend the hierarchical feature space to add additional layers of context to address the need for an extended field of view in aerial LiDAR.","PeriodicalId":167075,"journal":{"name":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR47015.2019.9174600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recent focus on expanding deep learning to use non-traditional input data has seen a high growth in research of deep learning on point sets. Due to its high collection cost and lack of available labeled data, there is an absence of research into deep learning with aerial LiDAR. In this paper, we present a new benchmark labeled dataset, called “Surrey Aerial 3 for evaluating networks on aerial LiDAR data”. The dataset covers over 6km2 and has three classes in multiple environments. We provide our architecture, “Curvature Weighted PointNet++” that eliminates PointNet++’s random batch selection and provides a way to select batches based on key points of interest selected from the Eigen feature space. We extend the hierarchical feature space to add additional layers of context to address the need for an extended field of view in aerial LiDAR.
有什么意义?基于扩展特征集的点云语义分割
最近对扩展深度学习以使用非传统输入数据的关注,在点集上的深度学习研究中取得了高增长。由于其高收集成本和缺乏可用的标记数据,因此缺乏对空中激光雷达深度学习的研究。在本文中,我们提出了一个新的基准标记数据集,称为“Surrey Aerial 3用于评估空中激光雷达数据网络”。该数据集覆盖面积超过6km2,在多个环境下分为三类。我们提供了我们的架构,“曲率加权PointNet++”,它消除了PointNet++的随机批选择,并提供了一种基于从特征空间中选择的关键兴趣点来选择批的方法。我们扩展了分层特征空间,增加了额外的上下文层,以满足空中激光雷达扩展视野的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信