The Easiest Hard Problem: Number Partitioning

S. Mertens
{"title":"The Easiest Hard Problem: Number Partitioning","authors":"S. Mertens","doi":"10.1093/oso/9780195177374.003.0012","DOIUrl":null,"url":null,"abstract":"Number partitioning is one of the classical NP-hard problems of combinatorial optimization. It has applications in areas like public key encryption and task scheduling. The random version of number partitioning has an \"easy-hard\" phase transition similar to the phase transitions observed in other combinatorial problems like $k$-SAT. In contrast to most other problems, number partitioning is simple enough to obtain detailled and rigorous results on the \"hard\" and \"easy\" phase and the transition that separates them. We review the known results on random integer partitioning, give a very simple derivation of the phase transition and discuss the algorithmic implications of both phases.","PeriodicalId":156167,"journal":{"name":"Computational Complexity and Statistical Physics","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Complexity and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780195177374.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

Number partitioning is one of the classical NP-hard problems of combinatorial optimization. It has applications in areas like public key encryption and task scheduling. The random version of number partitioning has an "easy-hard" phase transition similar to the phase transitions observed in other combinatorial problems like $k$-SAT. In contrast to most other problems, number partitioning is simple enough to obtain detailled and rigorous results on the "hard" and "easy" phase and the transition that separates them. We review the known results on random integer partitioning, give a very simple derivation of the phase transition and discuss the algorithmic implications of both phases.
最简单的难题:数字分割
数划分是组合优化中典型的np困难问题之一。它在公钥加密和任务调度等领域都有应用。数字划分的随机版本具有“易-难”相变,类似于在其他组合问题(如$k$-SAT)中观察到的相变。与大多数其他问题相比,数字划分非常简单,可以在“困难”和“容易”阶段以及将它们分开的过渡阶段获得详细和严格的结果。我们回顾了随机整数划分的已知结果,给出了相变的一个非常简单的推导,并讨论了这两个阶段的算法含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信