{"title":"4 – 8 GHz LNA design for a highly adaptive small satellite transponder using InGaAs pHEMT technology","authors":"S. Ekpo, D. George","doi":"10.1109/WAMICON.2010.5461877","DOIUrl":null,"url":null,"abstract":"The ever increasing global space activity is characterised by emerging space systems, operation and applications challenges. Hence, reliable RF and microwave receivers for in-orbit highly adaptive small satellites are needed to support reconfigurable multimedia/broadband applications in real-time with optimal performance. Though other parameters of the small satellite communication system may be critical, the noise level of the receiver determines the viability, reliability and deliverability of the project. Thus, a good design that delivers low noise performance, high gain and low power consumption for multipurpose space missions is inevitable. This paper describes a 0.15µm InGaAs pseudomorphic high electron mobility transistor amplifier with low noise and high gain in the frequency band 4 – 8 GHz. The monolithic microwave integrated circuit LNA design presented here shows the best performance known using this technology; noise figure of 0.5 dB and gain of 37 ± 1 dB over the characterised bandwidth.","PeriodicalId":112402,"journal":{"name":"2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAMICON.2010.5461877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The ever increasing global space activity is characterised by emerging space systems, operation and applications challenges. Hence, reliable RF and microwave receivers for in-orbit highly adaptive small satellites are needed to support reconfigurable multimedia/broadband applications in real-time with optimal performance. Though other parameters of the small satellite communication system may be critical, the noise level of the receiver determines the viability, reliability and deliverability of the project. Thus, a good design that delivers low noise performance, high gain and low power consumption for multipurpose space missions is inevitable. This paper describes a 0.15µm InGaAs pseudomorphic high electron mobility transistor amplifier with low noise and high gain in the frequency band 4 – 8 GHz. The monolithic microwave integrated circuit LNA design presented here shows the best performance known using this technology; noise figure of 0.5 dB and gain of 37 ± 1 dB over the characterised bandwidth.