Named-Entity Tagging and Domain adaptation for Better Customized Translation

NEWS@ACL Pub Date : 2018-07-20 DOI:10.18653/v1/W18-2407
Zhongwei Li, Xuancong Wang, AiTi Aw, Chng Eng Siong, Haizhou Li
{"title":"Named-Entity Tagging and Domain adaptation for Better Customized Translation","authors":"Zhongwei Li, Xuancong Wang, AiTi Aw, Chng Eng Siong, Haizhou Li","doi":"10.18653/v1/W18-2407","DOIUrl":null,"url":null,"abstract":"Customized translation need pay spe-cial attention to the target domain ter-minology especially the named-entities for the domain. Adding linguistic features to neural machine translation (NMT) has been shown to benefit translation in many studies. In this paper, we further demonstrate that adding named-entity (NE) feature with named-entity recognition (NER) into the source language produces better translation with NMT. Our experiments show that by just including the different NE classes and boundary tags, we can increase the BLEU score by around 1 to 2 points using the standard test sets from WMT2017. We also show that adding NE tags using NER and applying in-domain adaptation can be combined to further improve customized machine translation.","PeriodicalId":189654,"journal":{"name":"NEWS@ACL","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-2407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Customized translation need pay spe-cial attention to the target domain ter-minology especially the named-entities for the domain. Adding linguistic features to neural machine translation (NMT) has been shown to benefit translation in many studies. In this paper, we further demonstrate that adding named-entity (NE) feature with named-entity recognition (NER) into the source language produces better translation with NMT. Our experiments show that by just including the different NE classes and boundary tags, we can increase the BLEU score by around 1 to 2 points using the standard test sets from WMT2017. We also show that adding NE tags using NER and applying in-domain adaptation can be combined to further improve customized machine translation.
命名实体标签和领域自适应更好的定制翻译
自定义翻译需要特别注意目标领域术语,特别是该领域的命名实体。在神经机器翻译(NMT)中加入语言特征已被许多研究证明有利于翻译。在本文中,我们进一步证明了在源语言中添加带有命名实体识别(NER)的命名实体(NE)特征可以更好地使用NMT进行翻译。我们的实验表明,通过仅仅包括不同的NE类和边界标签,我们可以使用WMT2017的标准测试集将BLEU分数提高大约1到2分。我们还表明,使用NER添加网元标签和应用域内自适应可以结合起来进一步改进定制机器翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信