CFD Analysis of Marine Propeller Configurations in Cavitating Conditions

Ante Sikirica, Ivana Lučin, Zoran Čarija, Bože Lučin
{"title":"CFD Analysis of Marine Propeller Configurations in Cavitating Conditions","authors":"Ante Sikirica, Ivana Lučin, Zoran Čarija, Bože Lučin","doi":"10.18048/2020.00.19","DOIUrl":null,"url":null,"abstract":"Diversely performing propellers as a consequence of design variability are nowadays a commonplace. Fundamental geometric particularities, including size, stipulate performance characteristics, which are usually the only required parameters when deciding on a propeller for specific purpose. With the main focus on the performance, accompanying phenomena, e.g. cavitation, tend to be overlooked. In this paper, propeller configurations in cavitating flow are investigated, with emphasis on real-world performance differences caused by cavitation. Recommended CFD approach is presented with respect to configuration specifics. Available experimental data is used as a baseline for a single propeller, which is then analysed in ducted and tandem configurations with resulting cavitation extents and shape evaluated in the context of current designs.","PeriodicalId":366194,"journal":{"name":"Journal of Maritime & Transportation Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Maritime & Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18048/2020.00.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diversely performing propellers as a consequence of design variability are nowadays a commonplace. Fundamental geometric particularities, including size, stipulate performance characteristics, which are usually the only required parameters when deciding on a propeller for specific purpose. With the main focus on the performance, accompanying phenomena, e.g. cavitation, tend to be overlooked. In this paper, propeller configurations in cavitating flow are investigated, with emphasis on real-world performance differences caused by cavitation. Recommended CFD approach is presented with respect to configuration specifics. Available experimental data is used as a baseline for a single propeller, which is then analysed in ducted and tandem configurations with resulting cavitation extents and shape evaluated in the context of current designs.
空化条件下船舶螺旋桨构型CFD分析
作为设计可变性的结果,不同性能的螺旋桨现在是司空见惯的。基本的几何特性,包括尺寸,规定了性能特性,这通常是决定特定用途的螺旋桨时唯一需要的参数。由于主要关注的是性能,伴随的现象,如空化,往往被忽视。本文研究了螺旋桨在空化流中的配置,重点研究了空化引起的实际性能差异。针对配置细节提出了推荐的CFD方法。现有的实验数据被用作单个螺旋桨的基线,然后在导管和串列配置中进行分析,并在当前设计的背景下评估产生的空化程度和形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信