Application of neural networks to 3G power amplifier modeling

Taijun Liu, S. Boumaiza, F. Ghannouchi
{"title":"Application of neural networks to 3G power amplifier modeling","authors":"Taijun Liu, S. Boumaiza, F. Ghannouchi","doi":"10.1109/IJCNN.2005.1556274","DOIUrl":null,"url":null,"abstract":"In this paper a real-valued time-delayed neural network (RVTDNN) is utilized to build a baseband behavioral model of a 3G power amplifier. Based on the inphase and quadratic components of the input and output signals of a high power amplifier, a three-layer RVTDNN is firstly trained in Matlab and then implemented in Agilent design system software. In order to speed up the training process, a second-order learning algorithm namely scaled conjugate gradient method (SCGM) is employed to extract the RVTDNN model parameters (weights and biases). The comparison of the simulation based results to the measured ones reveals the strong ability of the identified RVTDNN to accurately predict the dynamic nonlinear behavior of a 90-Watt LDMOS power amplifier under a two-carrier 3GPP-FDD excitation signal.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"224 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper a real-valued time-delayed neural network (RVTDNN) is utilized to build a baseband behavioral model of a 3G power amplifier. Based on the inphase and quadratic components of the input and output signals of a high power amplifier, a three-layer RVTDNN is firstly trained in Matlab and then implemented in Agilent design system software. In order to speed up the training process, a second-order learning algorithm namely scaled conjugate gradient method (SCGM) is employed to extract the RVTDNN model parameters (weights and biases). The comparison of the simulation based results to the measured ones reveals the strong ability of the identified RVTDNN to accurately predict the dynamic nonlinear behavior of a 90-Watt LDMOS power amplifier under a two-carrier 3GPP-FDD excitation signal.
神经网络在3G功率放大器建模中的应用
本文利用实值时滞神经网络(RVTDNN)建立了3G功率放大器的基带行为模型。基于高功率放大器输入输出信号的相位分量和二次分量,首先在Matlab中对三层RVTDNN进行训练,然后在Agilent设计系统软件中实现。为了加快训练过程,采用二阶学习算法缩放共轭梯度法(SCGM)提取RVTDNN模型参数(权值和偏置)。仿真结果与实测值的对比表明,所识别的RVTDNN能够准确预测双载波3GPP-FDD激励信号下90w LDMOS功率放大器的动态非线性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信