Physics-based model acquisition and identification in airborne spectral images

D. Slater, G. Healey
{"title":"Physics-based model acquisition and identification in airborne spectral images","authors":"D. Slater, G. Healey","doi":"10.1109/ICCV.2001.937633","DOIUrl":null,"url":null,"abstract":"We consider the problem of acquiring models for unknown materials in airborne 0.4 /spl mu/m-2.5 /spl mu/m hyperspectral imagery and using these models to identify the unknown materials an image data obtained under significantly different conditions. The material models are generated using an airborne sensor spectrum measured under unknown conditions and a physical model for spectral variability. For computational efficiency, the material models are represented using low-dimensional spectral subspaces. We demonstrate the effectiveness of the material models using a set of material tracking experiments in HYDICE images acquired in a forest environment over widely varying conditions. We show that techniques based on the new representation significantly outperform methods based on direct spectral matching.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider the problem of acquiring models for unknown materials in airborne 0.4 /spl mu/m-2.5 /spl mu/m hyperspectral imagery and using these models to identify the unknown materials an image data obtained under significantly different conditions. The material models are generated using an airborne sensor spectrum measured under unknown conditions and a physical model for spectral variability. For computational efficiency, the material models are represented using low-dimensional spectral subspaces. We demonstrate the effectiveness of the material models using a set of material tracking experiments in HYDICE images acquired in a forest environment over widely varying conditions. We show that techniques based on the new representation significantly outperform methods based on direct spectral matching.
航空光谱图像中基于物理的模型获取与识别
本文研究了机载0.4 /spl μ m-2.5 /spl μ m高光谱图像中未知物质的获取问题,并利用这些模型对不同条件下获得的图像数据进行了未知物质的识别。材料模型是使用未知条件下测量的机载传感器光谱和光谱变异性的物理模型生成的。为了提高计算效率,材料模型使用低维谱子空间表示。我们使用一组在森林环境中在广泛变化的条件下获得的HYDICE图像中的材料跟踪实验来证明材料模型的有效性。我们表明,基于新表示的技术明显优于基于直接光谱匹配的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信