{"title":"An improved differential evolution algorithm with novel mutation strategy","authors":"Yujiao Shi, Hao Gao, Dongmei Wu","doi":"10.1109/SDE.2014.7031540","DOIUrl":null,"url":null,"abstract":"As a modern Evolutionary Algorithm, Differential Evolution (DE) is usually criticized for its slow convergence when compared to Particle Swarm Optimization (PSO) on the PSO's benchmark functions. In this paper, by combing the merits of PSO and DE, we first present a new hybrid DE algorithm to accelerate its convergence speed. Then a novel mutation strategy with local and global search operators is proposed for balancing the exploration ability and the convergence rate of the improved DE. The new algorithm is applied to a set of benchmark test problems and compared with basic PSO and DE algorithms and their variants. The experimental results show the new algorithm shows better achievements on most test problems.","PeriodicalId":224386,"journal":{"name":"2014 IEEE Symposium on Differential Evolution (SDE)","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Differential Evolution (SDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDE.2014.7031540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
As a modern Evolutionary Algorithm, Differential Evolution (DE) is usually criticized for its slow convergence when compared to Particle Swarm Optimization (PSO) on the PSO's benchmark functions. In this paper, by combing the merits of PSO and DE, we first present a new hybrid DE algorithm to accelerate its convergence speed. Then a novel mutation strategy with local and global search operators is proposed for balancing the exploration ability and the convergence rate of the improved DE. The new algorithm is applied to a set of benchmark test problems and compared with basic PSO and DE algorithms and their variants. The experimental results show the new algorithm shows better achievements on most test problems.