Efficient Arguments without Short PCPs

Y. Ishai, E. Kushilevitz, R. Ostrovsky
{"title":"Efficient Arguments without Short PCPs","authors":"Y. Ishai, E. Kushilevitz, R. Ostrovsky","doi":"10.1109/CCC.2007.10","DOIUrl":null,"url":null,"abstract":"Current constructions of efficient argument systems combine a short (polynomial size) PCP with a cryptographic hashing technique. We suggest an alternative approach for this problem that allows to simplify the underlying PCP machinery using a stronger cryptographic technique. More concretely, we present a direct method for compiling an exponentially long PCP which is succinctly described by a linear oracle function \\pi : F^n \\to F into an argument system in which the verifier sends to the prover O(n) encrypted field elements and receives O(1) encryptions in return. This compiler can be based on an arbitrary homomorphic encryption scheme. Applying our general compiler to the exponential size Hadamard code based PCP of Arora et al. (JACM 1998) yields a simple argument system for NP in which the communication from the prover to the verifier only includes a constant number of short encryptions. The main tool we use is a new cryptographic primitive which allows to efficiently commit to a linear function and later open the output of the function on an arbitrary vector. Our efficient implementation of this primitive is independently motivated by cryptographic applications.","PeriodicalId":175854,"journal":{"name":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2007.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

Abstract

Current constructions of efficient argument systems combine a short (polynomial size) PCP with a cryptographic hashing technique. We suggest an alternative approach for this problem that allows to simplify the underlying PCP machinery using a stronger cryptographic technique. More concretely, we present a direct method for compiling an exponentially long PCP which is succinctly described by a linear oracle function \pi : F^n \to F into an argument system in which the verifier sends to the prover O(n) encrypted field elements and receives O(1) encryptions in return. This compiler can be based on an arbitrary homomorphic encryption scheme. Applying our general compiler to the exponential size Hadamard code based PCP of Arora et al. (JACM 1998) yields a simple argument system for NP in which the communication from the prover to the verifier only includes a constant number of short encryptions. The main tool we use is a new cryptographic primitive which allows to efficiently commit to a linear function and later open the output of the function on an arbitrary vector. Our efficient implementation of this primitive is independently motivated by cryptographic applications.
没有简短pcp的有效论证
当前有效的参数系统结构将短(多项式大小)PCP与加密散列技术结合在一起。我们建议采用另一种方法来解决这个问题,该方法允许使用更强大的加密技术来简化底层的PCP机制。更具体地说,我们提出了一种直接的方法来编译一个指数级长的PCP,该PCP由线性预言函数\pi: F^n \to F简洁地描述为一个参数系统,在这个参数系统中,验证者向证明者发送O(n)个加密字段元素,并接收O(1)个加密作为回报。该编译器可以基于任意同态加密方案。将我们的通用编译器应用于Arora等人(JACM 1998)的指数大小的基于Hadamard代码的PCP (JACM 1998),可以产生一个简单的NP参数系统,其中从证明者到验证者的通信仅包含常数数量的短加密。我们使用的主要工具是一个新的加密原语,它允许有效地提交一个线性函数,然后在任意向量上打开函数的输出。我们对这个原语的有效实现是由加密应用程序独立驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信