Object detection in autonomous driving - from large to small datasets

David-Traian Iancu, Alexandru Sorici, A. Florea
{"title":"Object detection in autonomous driving - from large to small datasets","authors":"David-Traian Iancu, Alexandru Sorici, A. Florea","doi":"10.1109/ECAI46879.2019.9041976","DOIUrl":null,"url":null,"abstract":"The purpose of the paper is to analyze the current capacity of pedestrian and vehicle detection through four state of the art detectors -Yolo, SSD, Faster R-CNN and RetinaNet on a big dataset (BDD100K). Also, we analyzed if the results are transferable from one dataset to another - we used a small dataset from our campus, we offered some quantitative results and we made an error analysis based on the dataset characteristics (e.g. weather, light, size of the object).","PeriodicalId":285780,"journal":{"name":"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI46879.2019.9041976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The purpose of the paper is to analyze the current capacity of pedestrian and vehicle detection through four state of the art detectors -Yolo, SSD, Faster R-CNN and RetinaNet on a big dataset (BDD100K). Also, we analyzed if the results are transferable from one dataset to another - we used a small dataset from our campus, we offered some quantitative results and we made an error analysis based on the dataset characteristics (e.g. weather, light, size of the object).
自动驾驶中的目标检测——从大数据集到小数据集
本文的目的是在大数据集(BDD100K)上,通过yolo、SSD、Faster R-CNN和RetinaNet四种最先进的检测器来分析当前行人和车辆检测的能力。此外,我们还分析了结果是否可以从一个数据集转移到另一个数据集——我们使用了一个来自我们校园的小数据集,我们提供了一些定量结果,并根据数据集的特征(例如天气、光线、物体的大小)进行了误差分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信