3M-Transformers for Event Coding on Organized Crime Domain

Eric Parolin, L. Khan, Javier Osorio, Patrick T. Brandt, Vito D'Orazio, J. Holmes
{"title":"3M-Transformers for Event Coding on Organized Crime Domain","authors":"Eric Parolin, L. Khan, Javier Osorio, Patrick T. Brandt, Vito D'Orazio, J. Holmes","doi":"10.1109/DSAA53316.2021.9564232","DOIUrl":null,"url":null,"abstract":"Political scientists and security agencies increasingly rely on computerized event data generation to track conflict processes and violence around the world. However, most of these approaches rely on pattern-matching techniques constrained by large dictionaries that are too costly to develop, update, or expand to emerging domains or additional languages. In this paper, we provide an effective solution to those challenges. Here we develop the 3M-Transformers (Multilingual, Multi-label, Multitask) approach for Event Coding from domain specific multilingual corpora, dispensing external large repositories for such task, and expanding the substantive focus of analysis to organized crime, an emerging concern for security research. Our results indicate that our 3M-Transformers configurations outperform state-of-the-art usual Transformers models (BERT and XLM-RoBERTa) for coding events on actors, actions and locations in English, Spanish, and Portuguese languages.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Political scientists and security agencies increasingly rely on computerized event data generation to track conflict processes and violence around the world. However, most of these approaches rely on pattern-matching techniques constrained by large dictionaries that are too costly to develop, update, or expand to emerging domains or additional languages. In this paper, we provide an effective solution to those challenges. Here we develop the 3M-Transformers (Multilingual, Multi-label, Multitask) approach for Event Coding from domain specific multilingual corpora, dispensing external large repositories for such task, and expanding the substantive focus of analysis to organized crime, an emerging concern for security research. Our results indicate that our 3M-Transformers configurations outperform state-of-the-art usual Transformers models (BERT and XLM-RoBERTa) for coding events on actors, actions and locations in English, Spanish, and Portuguese languages.
有组织犯罪领域事件编码的3m - transformer
政治学家和安全机构越来越依赖计算机事件数据生成来跟踪世界各地的冲突过程和暴力。然而,这些方法中的大多数依赖于模式匹配技术,这些技术受到大型字典的限制,开发、更新或扩展到新兴领域或其他语言的成本太高。在本文中,我们为这些挑战提供了一个有效的解决方案。在这里,我们开发了3m - transformer(多语言,多标签,多任务)方法,用于从特定领域的多语言语料库中进行事件编码,为此类任务分配外部大型存储库,并将分析的实质性重点扩展到有组织犯罪,这是安全研究的新兴关注点。我们的结果表明,我们的3M-Transformers配置在用英语、西班牙语和葡萄牙语对演员、动作和位置进行编码方面优于最先进的常用Transformers模型(BERT和XLM-RoBERTa)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信