Detección y diagnóstico de fallas en sistemas eléctricos de potencia combinando una red neuronal autoasociativa y una red neuronal probabilística

J. González
{"title":"Detección y diagnóstico de fallas en sistemas eléctricos de potencia combinando una red neuronal autoasociativa y una red neuronal probabilística","authors":"J. González","doi":"10.13053/rcs-148-7-8","DOIUrl":null,"url":null,"abstract":"Power systems monitoring is particularly challenging due to the presence of dynamic load changes in normal operation mode of network nodes, the presence of both continuous and discrete variables, noisy information and lak or excess of data. Due to this, the need to develop more powerful approaches combining artificial intelligence techniques has been recognized. This paper proposes a monitoring system based on the system history data composed by two phases. In the first phase it learns the normal operation behavior of the system using an autoassociative neural network (AANN) which carries out the detection process. In the second phase the final diagnosis is given using a probabilistic neural","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-7-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Power systems monitoring is particularly challenging due to the presence of dynamic load changes in normal operation mode of network nodes, the presence of both continuous and discrete variables, noisy information and lak or excess of data. Due to this, the need to develop more powerful approaches combining artificial intelligence techniques has been recognized. This paper proposes a monitoring system based on the system history data composed by two phases. In the first phase it learns the normal operation behavior of the system using an autoassociative neural network (AANN) which carries out the detection process. In the second phase the final diagnosis is given using a probabilistic neural
结合自联想神经网络和概率神经网络的电力系统故障检测与诊断
由于电网节点的正常运行模式中存在动态负荷变化、连续变量和离散变量并存、信息有噪声、数据缺乏或过剩等问题,电力系统的监测尤其具有挑战性。因此,人们认识到需要开发结合人工智能技术的更强大的方法。本文提出了一种基于系统历史数据的监控系统,该系统由两个阶段组成。在第一阶段,它使用自关联神经网络(AANN)学习系统的正常运行行为,并进行检测过程。在第二阶段,使用概率神经网络给出最终诊断
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信