Dynamic Facet Selection by Maximizing Graded Relevance

Michael R. Glass, Md. Faisal Mahbub Chowdhury, Yu Deng, R. Mahindru, Nicolas R. Fauceglia, A. Gliozzo, Nandana Mihindukulasooriya
{"title":"Dynamic Facet Selection by Maximizing Graded Relevance","authors":"Michael R. Glass, Md. Faisal Mahbub Chowdhury, Yu Deng, R. Mahindru, Nicolas R. Fauceglia, A. Gliozzo, Nandana Mihindukulasooriya","doi":"10.18653/v1/2021.internlp-1.5","DOIUrl":null,"url":null,"abstract":"Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human–computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facets-documents mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.","PeriodicalId":262697,"journal":{"name":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.internlp-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human–computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facets-documents mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.
动态面选择最大化分级相关性
动态面搜索(DFS)是一种交互式查询细化技术,是人机信息检索(HCIR)方法的一种形式。它允许用户通过方面缩小搜索结果,其中方面-文档映射是在运行时根据用户查询的上下文确定的,而不是静态地预先为方面建立索引。在本文中,我们提出了一种新的无监督的动态facet生成方法,即乐观facet,它试图生成facet的最佳子集,从而最大化预期贴现累积增益(DCG),这是一种使用分级相关尺度的排序质量度量。我们还发布了生成新的评估数据集的代码。通过在两个数据集上的实证结果,我们表明所提出的DFS方法显著提高了文档在搜索结果中的排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信