Polynomial evaluation via the division algorithm the fast Fourier transform revisited

C. M. Fiduccia
{"title":"Polynomial evaluation via the division algorithm the fast Fourier transform revisited","authors":"C. M. Fiduccia","doi":"10.1145/800152.804900","DOIUrl":null,"url":null,"abstract":"A polynomial p(x) can be evaluated at several points x1,...,xm by first constructing a polynomial d(x) which has x1,...,xm as roots, then dividing p(x) by d(x), and finally evaluating the remainder r(x) at x1,...,xm. This method is useful if the coefficient sequence of d(x) can be chosen to be sparse, thus simplifying the construction of r(x). The case m=1 and d(x) = x−x1 is Horner's rule, while the case d(x) = xm−1 yields the fast Fourier transform algorithm.","PeriodicalId":229726,"journal":{"name":"Proceedings of the fourth annual ACM symposium on Theory of computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fourth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800152.804900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

A polynomial p(x) can be evaluated at several points x1,...,xm by first constructing a polynomial d(x) which has x1,...,xm as roots, then dividing p(x) by d(x), and finally evaluating the remainder r(x) at x1,...,xm. This method is useful if the coefficient sequence of d(x) can be chosen to be sparse, thus simplifying the construction of r(x). The case m=1 and d(x) = x−x1 is Horner's rule, while the case d(x) = xm−1 yields the fast Fourier transform algorithm.
通过除法算法对多项式求值进行了快速傅立叶变换
多项式p(x)可以在几个点x1,…处求值。,xm首先构造一个多项式d(x),它有x1,…,xm作为根,然后p(x)除以d(x),最后求余数r(x)在x1,…,xm处的值。如果可以选择d(x)的系数序列为稀疏,从而简化r(x)的构造,则该方法是有用的。当m=1且d(x) = x - x1时,采用霍纳法则,而当d(x) = xm - 1时,采用快速傅里叶变换算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信