Unmanned Aerial Vehicle (UAV)–Based Imaging Spectroscopy for Predicting Wheat Leaf Nitrogen

R. Sahoo, Shalini Gakhar, R. Rejith, R. Ranjan, M. C. Meena, A. Dey, J. Mukherjee, R. Dhakar, Sunny Arya, Anchal Daas, S. Babu, P. K. Upadhyay, Kapila Sekhawat, Sudhirkumar, Mahesh Kumar, V. Chinnusamy, M. Khanna
{"title":"Unmanned Aerial Vehicle (UAV)–Based Imaging Spectroscopy for Predicting Wheat Leaf Nitrogen","authors":"R. Sahoo, Shalini Gakhar, R. Rejith, R. Ranjan, M. C. Meena, A. Dey, J. Mukherjee, R. Dhakar, Sunny Arya, Anchal Daas, S. Babu, P. K. Upadhyay, Kapila Sekhawat, Sudhirkumar, Mahesh Kumar, V. Chinnusamy, M. Khanna","doi":"10.14358/pers.22-00089r2","DOIUrl":null,"url":null,"abstract":"Quantitative estimation of crop nitrogen is the key to site-specific management for enhanced nitrogen (N) use efficiency and a sustainable crop production system. As an alternate to the conventional approach through wet chemistry, sensor-based noninvasive, rapid, and near-real-time\n assessment of crop N at the field scale has been the need for precision agriculture. The present study attempts to predict leaf N of wheat crop through spectroscopy using a field portable spectroradiometer (spectral range of 400–2500 nm) on the ground in the crop field and an imaging\n spectrometer (spectral range of 400–1000 nm) from an unmanned aerial vehicle (UAV) with the objectives to evaluate (1) four multivariate spectral models (i.e., artificial neural network, extreme learning machine [ELM], least absolute shrinkage and selection operator, and support vector\n machine regression) and (2) two sets of hyperspectral data collected from two platforms and two different sensors. In the former part of the study, ELM outperforms the other methods with maximum calibration and validation R2 of 0.99 and 0.96, respectively. Furthermore, the image data set acquired\n from UAV gives higher performance compared to field spectral data. Also, significant bands are identified using stepwise multiple linear regression and used for modeling to generate a wheat leaf N map of the experimental field.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00089r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Quantitative estimation of crop nitrogen is the key to site-specific management for enhanced nitrogen (N) use efficiency and a sustainable crop production system. As an alternate to the conventional approach through wet chemistry, sensor-based noninvasive, rapid, and near-real-time assessment of crop N at the field scale has been the need for precision agriculture. The present study attempts to predict leaf N of wheat crop through spectroscopy using a field portable spectroradiometer (spectral range of 400–2500 nm) on the ground in the crop field and an imaging spectrometer (spectral range of 400–1000 nm) from an unmanned aerial vehicle (UAV) with the objectives to evaluate (1) four multivariate spectral models (i.e., artificial neural network, extreme learning machine [ELM], least absolute shrinkage and selection operator, and support vector machine regression) and (2) two sets of hyperspectral data collected from two platforms and two different sensors. In the former part of the study, ELM outperforms the other methods with maximum calibration and validation R2 of 0.99 and 0.96, respectively. Furthermore, the image data set acquired from UAV gives higher performance compared to field spectral data. Also, significant bands are identified using stepwise multiple linear regression and used for modeling to generate a wheat leaf N map of the experimental field.
基于无人机的小麦叶片氮素成像光谱预测研究
作物氮素定量估算是提高氮素利用效率和实现作物可持续生产系统的关键。作为传统湿化学方法的替代方案,基于传感器的非侵入性、快速、近实时的田间作物氮评估一直是精准农业的需要。本研究利用田间便携式光谱辐射计(光谱范围400-2500 nm)和无人机成像光谱仪(光谱范围400-1000 nm)对小麦作物叶片氮进行光谱预测,目的是评估(1)4种多元光谱模型(即人工神经网络、极限学习机、最小绝对收缩和选择算子);(2)从两个平台和两个不同的传感器采集的两组高光谱数据。在前一部分的研究中,ELM的最大校准和验证R2分别为0.99和0.96,优于其他方法。此外,与现场光谱数据相比,无人机图像数据集具有更高的性能。此外,利用逐步多元线性回归识别出显著波段,并用于建模生成试验田小麦叶片N图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信