Composition of Geospatial Visualizations for Scale-aware Views of Multiple Outcome Variables in Population Surveys

Harshitha Ravindra, Jaya Sreevalsan-Nair
{"title":"Composition of Geospatial Visualizations for Scale-aware Views of Multiple Outcome Variables in Population Surveys","authors":"Harshitha Ravindra, Jaya Sreevalsan-Nair","doi":"10.1109/IV56949.2022.00077","DOIUrl":null,"url":null,"abstract":"Population survey data is important for understanding the status of well-being along any dimensions, i.e., social, economic, political, health, etc. This data generates spatial point patterns which can be explored and analyzed using visualization. Given the spatial aspect of the data, there is a requirement of using cartographic maps, which are mostly limited to visualizing a single variable in most cases. Here, it is also important that the choice of visualizations also enable scale-aware analysis when zooming in and out of the maps, since the data is from the smaller political units and can be aggregated to larger political units. Thus, we explore the different visual compositions which use mathematical operators and the composite layouts for visualizing multiple outcome variables in survey data. The mathematical operators allow the use of univariate and bivariate data modeling and representation, and composite layouts of interest are juxtaposition and superimposed views. We demonstrate the inferences from visualizations using a case study on malnutrition in children under five in India. Our work shows that a visual composition of binary relationships represented in a visualization and a juxtaposed layout of such pairwise variables is effective in making inferences from the multivariate spatial point patterns in population data.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Population survey data is important for understanding the status of well-being along any dimensions, i.e., social, economic, political, health, etc. This data generates spatial point patterns which can be explored and analyzed using visualization. Given the spatial aspect of the data, there is a requirement of using cartographic maps, which are mostly limited to visualizing a single variable in most cases. Here, it is also important that the choice of visualizations also enable scale-aware analysis when zooming in and out of the maps, since the data is from the smaller political units and can be aggregated to larger political units. Thus, we explore the different visual compositions which use mathematical operators and the composite layouts for visualizing multiple outcome variables in survey data. The mathematical operators allow the use of univariate and bivariate data modeling and representation, and composite layouts of interest are juxtaposition and superimposed views. We demonstrate the inferences from visualizations using a case study on malnutrition in children under five in India. Our work shows that a visual composition of binary relationships represented in a visualization and a juxtaposed layout of such pairwise variables is effective in making inferences from the multivariate spatial point patterns in population data.
人口调查中多结果变量尺度感知视图的地理空间可视化组成
人口调查数据对于了解社会、经济、政治、健康等各个方面的福祉状况都很重要。这些数据生成空间点模式,可以使用可视化技术进行探索和分析。考虑到数据的空间方面,需要使用制图地图,在大多数情况下,这些地图大多局限于可视化单个变量。在这里,在放大和缩小地图时,可视化的选择还支持可感知比例的分析,这一点也很重要,因为数据来自较小的政治单位,可以聚合到较大的政治单位。因此,我们探索了不同的视觉组合,使用数学运算符和复合布局来可视化调查数据中的多个结果变量。数学运算符允许使用单变量和双变量数据建模和表示,感兴趣的复合布局是并置和叠加视图。我们用一个关于印度五岁以下儿童营养不良的案例研究来论证可视化的推论。我们的工作表明,在可视化中表示的二元关系的视觉组合和这种成对变量的并置布局在从人口数据中的多变量空间点模式中进行推断时是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信