Comparison of Reconstruction Algorithms for Brain Stroke Microwave Imaging

Valeria Mariano, J. T. Vásquez, R. Scapaticci, L. Crocco, P. Kosmas, F. Vipiana
{"title":"Comparison of Reconstruction Algorithms for Brain Stroke Microwave Imaging","authors":"Valeria Mariano, J. T. Vásquez, R. Scapaticci, L. Crocco, P. Kosmas, F. Vipiana","doi":"10.1109/IMBIoC47321.2020.9385032","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to describe and compare the performances of three image reconstruction algorithms that can be used for brain stroke microwave imaging. The algorithms belong to the class of non-linear iterative algorithms and are capable of providing a quantitative map of the imaged scenario. The first algorithm is the Contrast Source Inversion (CSI) method, which uses the Finite Element Method (FEM) to discretize the domain of interest. The second one is the Subspace-Based Optimization Method (SOM) that has some properties in common with the CSI method, and it also uses FEM to discretize the domain. The last one is the Distorted Born Iterative Method with the inverse solver Two-step Iterative Shrinkage/Thresholding (DBIM-TwIST), which exploits the forward Finite Difference Time Domain (FDTD) solver. The reconstruction examples are created with 3-D synthetic data modelling realistic brain tissues with the presence of a blood region, representing the stroke area in the brain, whereas the inversion step is carried out using a 2-D model.","PeriodicalId":297049,"journal":{"name":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIoC47321.2020.9385032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The aim of this paper is to describe and compare the performances of three image reconstruction algorithms that can be used for brain stroke microwave imaging. The algorithms belong to the class of non-linear iterative algorithms and are capable of providing a quantitative map of the imaged scenario. The first algorithm is the Contrast Source Inversion (CSI) method, which uses the Finite Element Method (FEM) to discretize the domain of interest. The second one is the Subspace-Based Optimization Method (SOM) that has some properties in common with the CSI method, and it also uses FEM to discretize the domain. The last one is the Distorted Born Iterative Method with the inverse solver Two-step Iterative Shrinkage/Thresholding (DBIM-TwIST), which exploits the forward Finite Difference Time Domain (FDTD) solver. The reconstruction examples are created with 3-D synthetic data modelling realistic brain tissues with the presence of a blood region, representing the stroke area in the brain, whereas the inversion step is carried out using a 2-D model.
脑卒中微波成像重建算法的比较
本文的目的是描述和比较三种可用于脑卒中微波成像的图像重建算法的性能。该算法属于非线性迭代算法,能够提供图像场景的定量映射。第一种算法是对比源反演(CSI)方法,该方法使用有限元法(FEM)将感兴趣的域离散化。第二种方法是基于子空间的优化方法(SOM),该方法与CSI方法有一些共同的特性,并且使用有限元方法对域进行离散化。最后一种是利用前向时域有限差分(FDTD)求解器,采用逆求解器两步迭代收缩/阈值法(DBIM-TwIST)的畸变Born迭代法。重建示例使用三维合成数据建模真实脑组织,其中存在血液区域,代表大脑中的中风区域,而反演步骤使用二维模型进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信