Xianjun Xia, R. Togneri, Ferdous Sohel, David Huang
{"title":"Random forest classification based acoustic event detection","authors":"Xianjun Xia, R. Togneri, Ferdous Sohel, David Huang","doi":"10.1109/ICME.2017.8019452","DOIUrl":null,"url":null,"abstract":"This paper deals with the acoustic event detection (AED) to improve the detection accuracy of acoustic events. Acoustic event detection task is performed by a regression via classification (RvC) based approach along with the random forest technique. A discretization process is used to convert the continuous frame positions within acoustic events into event duration class labels. Outputs of the category-specific random forest classifiers are then reversed back to the event boundary information. Evaluations on the UPC-TALP database which consists of highly variable acoustic events demonstrate the efficiency of the proposed approaches with improvements in detection error rate compared to the best baseline system.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
This paper deals with the acoustic event detection (AED) to improve the detection accuracy of acoustic events. Acoustic event detection task is performed by a regression via classification (RvC) based approach along with the random forest technique. A discretization process is used to convert the continuous frame positions within acoustic events into event duration class labels. Outputs of the category-specific random forest classifiers are then reversed back to the event boundary information. Evaluations on the UPC-TALP database which consists of highly variable acoustic events demonstrate the efficiency of the proposed approaches with improvements in detection error rate compared to the best baseline system.