Ahmed Aboutaleb, Amirhossein Sayyafan, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, R. Wood
{"title":"Deep Neural Network-based Detection and Partial Response Equalization for Multilayer Magnetic Recording","authors":"Ahmed Aboutaleb, Amirhossein Sayyafan, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, R. Wood","doi":"10.1109/TMRC49521.2020.9366719","DOIUrl":null,"url":null,"abstract":"The hard disk drive (HDD) industry stores data at areal densities close to the capacity limit of the onedimensional (1D) magnetic recording channel [1]. New technologies are emerging to increase density, including heat assisted magnetic recording (HAMR), microwave-assisted magnetic recording (MAMR), and two-dimensional magnetic recording (TDMR). TDMR employs 2D signal processing to achieve significant density gains, without changes to existing magnetic media. Recent encouraging studies [2] –[5] propose multilayer magnetic recording (MLMR): vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the design of deep neural network (DNN) based methods for equalization and detection for MLMR.","PeriodicalId":131361,"journal":{"name":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 31st Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC49521.2020.9366719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The hard disk drive (HDD) industry stores data at areal densities close to the capacity limit of the onedimensional (1D) magnetic recording channel [1]. New technologies are emerging to increase density, including heat assisted magnetic recording (HAMR), microwave-assisted magnetic recording (MAMR), and two-dimensional magnetic recording (TDMR). TDMR employs 2D signal processing to achieve significant density gains, without changes to existing magnetic media. Recent encouraging studies [2] –[5] propose multilayer magnetic recording (MLMR): vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the design of deep neural network (DNN) based methods for equalization and detection for MLMR.