Optimization of nanostructured high efficiency perovskite/c-Si tandem solar cells via numerical simulation (Conference Presentation)

P. Manley, K. Jäger, P. Tockhorn, S. Burger, S. Albrecht, C. Becker
{"title":"Optimization of nanostructured high efficiency perovskite/c-Si tandem solar cells via numerical simulation (Conference Presentation)","authors":"P. Manley, K. Jäger, P. Tockhorn, S. Burger, S. Albrecht, C. Becker","doi":"10.1117/12.2321240","DOIUrl":null,"url":null,"abstract":"We present optical simulations for a tandem solar cell consisting of a nanostructured thin-film perovskite top cell and a silicon heterojunction (SHJ) wafer bottom cell. The absorption and related current density are calculated using the rigorous simulations in the form of the finite element method for the nanostructured perovskite cell and a semi-empirical method for the SHJ cell. In order to reach the optimal value for the perovskite layer thickness we employ Newton’s method using derivatives obtained directly from the rigorous simulation. Using this we obtain an optimal layer thickness using typically one iteration step and eliminate the need for a parameter scan.\nWe compare the results for different sinusoidal nanotextures applied to different layers in the multilayer thin-film perovskite top cell. The nanotextures lead to a gain in absorption and power conversion efficiency in comparison to an optimized planar reference. We also present experimental results towards a realisation of the proposed structure. These results give valuable insight for the emerging field of high efficiency perovskite/SHJ tandem solar cells.","PeriodicalId":179007,"journal":{"name":"Nanostructured Thin Films XI","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanostructured Thin Films XI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2321240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present optical simulations for a tandem solar cell consisting of a nanostructured thin-film perovskite top cell and a silicon heterojunction (SHJ) wafer bottom cell. The absorption and related current density are calculated using the rigorous simulations in the form of the finite element method for the nanostructured perovskite cell and a semi-empirical method for the SHJ cell. In order to reach the optimal value for the perovskite layer thickness we employ Newton’s method using derivatives obtained directly from the rigorous simulation. Using this we obtain an optimal layer thickness using typically one iteration step and eliminate the need for a parameter scan. We compare the results for different sinusoidal nanotextures applied to different layers in the multilayer thin-film perovskite top cell. The nanotextures lead to a gain in absorption and power conversion efficiency in comparison to an optimized planar reference. We also present experimental results towards a realisation of the proposed structure. These results give valuable insight for the emerging field of high efficiency perovskite/SHJ tandem solar cells.
纳米结构高效钙钛矿/c-Si串联太阳能电池的数值模拟优化(会议报告)
我们提出了由纳米结构薄膜钙钛矿顶部电池和硅异质结(SHJ)晶圆底部电池组成的串联太阳能电池的光学模拟。采用有限元法对纳米结构钙钛矿电池和半经验法对SHJ电池进行了严格的模拟,计算了吸收和相关电流密度。为了达到钙钛矿层厚度的最优值,我们采用牛顿法,直接从严格模拟中得到导数。使用这种方法,我们通常使用一个迭代步骤获得最佳层厚度,并消除了参数扫描的需要。我们比较了应用于多层薄膜钙钛矿顶电池不同层的不同正弦纳米结构的结果。与优化的平面参考材料相比,纳米结构在吸收和功率转换效率方面有所提高。我们还提出了实现所提出结构的实验结果。这些结果为高效钙钛矿/SHJ串联太阳能电池的新兴领域提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信