Analysis and mitigation of single event effects on flash-based FPGAS

L. Sterpone, B. Du
{"title":"Analysis and mitigation of single event effects on flash-based FPGAS","authors":"L. Sterpone, B. Du","doi":"10.1109/ETS.2014.6847804","DOIUrl":null,"url":null,"abstract":"In the present paper, we propose a new design flow for the analysis and the implementation of circuits on Flash-based FPGAs hardened against Single Event Effects (SEEs). The solution we developed is based on two phases: 1) an analyzer algorithm able to evaluate the propagations of SETs through logic gates; 2) a hardening algorithm able to place and route a circuit by means of optimal electrical filtering and selective guard gates insertions. The effectiveness of the proposed design flow has been evaluated by performing hardening on seven benchmark circuits and comparing the results using different implementation approaches on 130nm Flash-based technology. The obtained results have been validated against radiation-beam testing using heavy-ions and demonstrated that our solution is able to decrease the circuits sensitivity versus SEE by two orders of magnitude with a reduction of resource overhead of 83 % with respect to traditional mitigation approaches.","PeriodicalId":145416,"journal":{"name":"2014 19th IEEE European Test Symposium (ETS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2014.6847804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the present paper, we propose a new design flow for the analysis and the implementation of circuits on Flash-based FPGAs hardened against Single Event Effects (SEEs). The solution we developed is based on two phases: 1) an analyzer algorithm able to evaluate the propagations of SETs through logic gates; 2) a hardening algorithm able to place and route a circuit by means of optimal electrical filtering and selective guard gates insertions. The effectiveness of the proposed design flow has been evaluated by performing hardening on seven benchmark circuits and comparing the results using different implementation approaches on 130nm Flash-based technology. The obtained results have been validated against radiation-beam testing using heavy-ions and demonstrated that our solution is able to decrease the circuits sensitivity versus SEE by two orders of magnitude with a reduction of resource overhead of 83 % with respect to traditional mitigation approaches.
基于闪存的fpga单事件效应分析与缓解
在本文中,我们提出了一种新的设计流程,用于分析和实现基于flash的fpga抗单事件效应(SEEs)的电路。我们开发的解决方案基于两个阶段:1)能够评估通过逻辑门的set传播的分析器算法;2)一种能够通过最优电滤波和选择性保护门插入来放置和布线电路的强化算法。通过对七个基准电路进行硬化,并比较在130nm闪存技术上使用不同实现方法的结果,评估了所提出设计流程的有效性。所获得的结果已通过使用重离子的辐射束测试进行验证,并证明我们的解决方案能够将电路灵敏度与SEE相比降低两个数量级,与传统的缓解方法相比,资源开销减少83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信