Uncertanty Analysis of Project Emissions

A. Abdi, Sharareh Taahipour
{"title":"Uncertanty Analysis of Project Emissions","authors":"A. Abdi, Sharareh Taahipour","doi":"10.1109/EPEC.2018.8598319","DOIUrl":null,"url":null,"abstract":"Many nations are implementing or plan to implement a carbon pricing program in response to global warming and climate change issues. A significant amount of greenhouse gas (GHG) emissions can be attributed to projects, mainly construction works. Therefore, projects' environmental impact should be estimated before the project commencement and be monitored during its implementation phase. In this paper, we propose a probabilistic model to quantify the uncertainty of project GHG emissions using Bayesian networks (BNs) and simulation techniques. The model provides a quantitative risk analysis mechanism to estimate the total emissions of the project as well as an update of the final emissions using information on the completed activates.","PeriodicalId":265297,"journal":{"name":"2018 IEEE Electrical Power and Energy Conference (EPEC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2018.8598319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many nations are implementing or plan to implement a carbon pricing program in response to global warming and climate change issues. A significant amount of greenhouse gas (GHG) emissions can be attributed to projects, mainly construction works. Therefore, projects' environmental impact should be estimated before the project commencement and be monitored during its implementation phase. In this paper, we propose a probabilistic model to quantify the uncertainty of project GHG emissions using Bayesian networks (BNs) and simulation techniques. The model provides a quantitative risk analysis mechanism to estimate the total emissions of the project as well as an update of the final emissions using information on the completed activates.
项目排放的不确定性分析
许多国家正在实施或计划实施碳定价计划,以应对全球变暖和气候变化问题。大量的温室气体(GHG)排放可归因于项目,主要是建筑工程。因此,项目的环境影响应在项目开始前进行评估,并在项目实施阶段进行监测。在本文中,我们提出了一个概率模型,利用贝叶斯网络(BNs)和模拟技术量化项目温室气体排放的不确定性。该模型提供了一个定量的风险分析机制,以估计项目的总排放量,并利用已完成的活动的信息更新最终排放量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信