Hyperdimensional Computing Encoding Schemes for Improved Image Classification

Victor Miranda, Olivia G. d'Aliberti
{"title":"Hyperdimensional Computing Encoding Schemes for Improved Image Classification","authors":"Victor Miranda, Olivia G. d'Aliberti","doi":"10.1109/HST56032.2022.10024980","DOIUrl":null,"url":null,"abstract":"We introduce a novel encoding scheme for hyperdimensional computing (HDC) image classification tasks that takes advantage of both spatial awareness of pixels and nonlinear relationships between pixel values using a Siamese Neural Network (SNN) architecture. We demonstrate that, using this encoding scheme, we can achieve improved classification accuracy on the MNIST and CIFAR datasets over the current state-of-the-art binary HDC encoding scheme.","PeriodicalId":162426,"journal":{"name":"2022 IEEE International Symposium on Technologies for Homeland Security (HST)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST56032.2022.10024980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce a novel encoding scheme for hyperdimensional computing (HDC) image classification tasks that takes advantage of both spatial awareness of pixels and nonlinear relationships between pixel values using a Siamese Neural Network (SNN) architecture. We demonstrate that, using this encoding scheme, we can achieve improved classification accuracy on the MNIST and CIFAR datasets over the current state-of-the-art binary HDC encoding scheme.
改进图像分类的超维计算编码方案
我们引入了一种新的编码方案,用于超维计算(HDC)图像分类任务,该方案利用像素的空间感知和像素值之间的非线性关系,使用暹罗神经网络(SNN)架构。我们证明,使用这种编码方案,我们可以在MNIST和CIFAR数据集上实现比当前最先进的二进制HDC编码方案更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信