Modeling and inference for mixtures of simple symmetric exponential families of p ‐dimensional distributions for vectors with binary coordinates

A. Chakraborty, S. Vardeman
{"title":"Modeling and inference for mixtures of simple symmetric exponential families of p ‐dimensional distributions for vectors with binary coordinates","authors":"A. Chakraborty, S. Vardeman","doi":"10.1002/sam.11528","DOIUrl":null,"url":null,"abstract":"We propose tractable symmetric exponential families of distributions for multivariate vectors of 0's and 1's in p dimensions, or what are referred to in this paper as binary vectors, that allow for nontrivial amounts of variation around some central value μ∈{0,1}p . We note that more or less standard asymptotics provides likelihood‐based inference in the one‐sample problem. We then consider mixture models where component distributions are of this form. Bayes analysis based on Dirichlet processes and Jeffreys priors for the exponential family parameters prove tractable and informative in problems where relevant distributions for a vector of binary variables are clearly not symmetric. We also extend our proposed Bayesian mixture model analysis to datasets with missing entries. Performance is illustrated through simulation studies and application to real datasets.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose tractable symmetric exponential families of distributions for multivariate vectors of 0's and 1's in p dimensions, or what are referred to in this paper as binary vectors, that allow for nontrivial amounts of variation around some central value μ∈{0,1}p . We note that more or less standard asymptotics provides likelihood‐based inference in the one‐sample problem. We then consider mixture models where component distributions are of this form. Bayes analysis based on Dirichlet processes and Jeffreys priors for the exponential family parameters prove tractable and informative in problems where relevant distributions for a vector of binary variables are clearly not symmetric. We also extend our proposed Bayesian mixture model analysis to datasets with missing entries. Performance is illustrated through simulation studies and application to real datasets.
二元坐标下向量p维分布的简单对称指数族混合的建模与推理
我们提出了p维上0和1的多元向量的可处理的对称指数族分布,或者在本文中被称为二进制向量,它允许在某个中心值μ∈{0,1}p周围的非平凡量的变化。我们注意到,在单样本问题中,或多或少的标准渐近提供了基于似然的推理。然后我们考虑混合模型,其中组件分布是这种形式。在二元变量向量的相关分布明显不对称的情况下,基于Dirichlet过程和Jeffreys先验的指数族参数的Bayes分析证明是可处理的和信息丰富的。我们还将提出的贝叶斯混合模型分析扩展到缺少条目的数据集。通过仿真研究和实际数据集的应用说明了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信