Detecting a distributed denial of service attack using a pre-processed convolutional neural network

M. Ghanbari, W. Kinsner, K. Ferens
{"title":"Detecting a distributed denial of service attack using a pre-processed convolutional neural network","authors":"M. Ghanbari, W. Kinsner, K. Ferens","doi":"10.1109/EPEC.2017.8286243","DOIUrl":null,"url":null,"abstract":"This paper presents a scheme for detecting distributed denial of service (DDoS) attacks for smart grids. The main procedure of the proposed approach consists of applying a discrete wavelet transform to input data to extract features; training a convolutional neural network (CNN) to the extracted features; and testing the CNN to detect anomalous behavior in the data based on a threshold determined in the training parameters. The implementation detected the DDoS attack with 56.1% accuracy with the one stage CNN and 80.77% accuracy with the one stage pre-processed CNN.","PeriodicalId":141250,"journal":{"name":"2017 IEEE Electrical Power and Energy Conference (EPEC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2017.8286243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a scheme for detecting distributed denial of service (DDoS) attacks for smart grids. The main procedure of the proposed approach consists of applying a discrete wavelet transform to input data to extract features; training a convolutional neural network (CNN) to the extracted features; and testing the CNN to detect anomalous behavior in the data based on a threshold determined in the training parameters. The implementation detected the DDoS attack with 56.1% accuracy with the one stage CNN and 80.77% accuracy with the one stage pre-processed CNN.
使用预处理卷积神经网络检测分布式拒绝服务攻击
提出了一种智能电网分布式拒绝服务(DDoS)攻击检测方案。该方法的主要步骤是对输入数据进行离散小波变换提取特征;对提取的特征训练卷积神经网络(CNN);并根据训练参数中确定的阈值测试CNN以检测数据中的异常行为。该实现使用一阶段CNN检测DDoS攻击的准确率为56.1%,使用一阶段预处理CNN检测准确率为80.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信