Localized Geometric Moves to Compute Hyperbolic Structures on Triangulated 3-Manifolds

Clément Maria, Owen Rouill'e
{"title":"Localized Geometric Moves to Compute Hyperbolic Structures on Triangulated 3-Manifolds","authors":"Clément Maria, Owen Rouill'e","doi":"10.4230/LIPIcs.ESA.2022.78","DOIUrl":null,"url":null,"abstract":"A fundamental way to study 3-manifolds is through the geometric lens, one of the most prominent geometries being the hyperbolic one. We focus on the computation of a complete hyperbolic structure on a connected orientable hyperbolic 3-manifold with torus boundaries. This family of 3-manifolds includes the knot complements. This computation of a hyperbolic structure requires the resolution of gluing equations on a triangulation of the space, but not all triangulations admit a solution to the equations. In this paper, we propose a new method to find a triangulation that admits a solution to the gluing equations, using convex optimization and combinatorial modifications. It is based on Casson and Rivin s reformulation of the equations. We provide a novel approach to modify a triangulation and update its geometry, along with experimental results to support the new method.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ESA.2022.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental way to study 3-manifolds is through the geometric lens, one of the most prominent geometries being the hyperbolic one. We focus on the computation of a complete hyperbolic structure on a connected orientable hyperbolic 3-manifold with torus boundaries. This family of 3-manifolds includes the knot complements. This computation of a hyperbolic structure requires the resolution of gluing equations on a triangulation of the space, but not all triangulations admit a solution to the equations. In this paper, we propose a new method to find a triangulation that admits a solution to the gluing equations, using convex optimization and combinatorial modifications. It is based on Casson and Rivin s reformulation of the equations. We provide a novel approach to modify a triangulation and update its geometry, along with experimental results to support the new method.
三角化3流形上计算双曲结构的局部几何移动
研究3-流形的一个基本方法是通过几何透镜,最突出的几何之一是双曲几何。研究了具有环面边界的连通可定向双曲3-流形上的完全双曲结构的计算。这个3流形族包括结补。这种双曲结构的计算需要在空间的三角剖分上粘接方程的分辨率,但并不是所有的三角剖分都承认方程的解。本文提出了一种利用凸优化和组合修正来求解粘接方程的三角剖分的新方法。它是基于Casson和Rivin对方程的重新表述。我们提供了一种新的方法来修改三角测量和更新其几何形状,以及支持新方法的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信