A simple text detection in document images using classification-based techniques

Khanabhorn Kawattikul, P. Chomphuwiset
{"title":"A simple text detection in document images using classification-based techniques","authors":"Khanabhorn Kawattikul, P. Chomphuwiset","doi":"10.1109/ISCMI.2017.8279610","DOIUrl":null,"url":null,"abstract":"Text regions can be useful to computer vision applications. It can be used to label and train automatic layout learning systems or to detect and locate the title, keywords, subheadings, paragraphs and image regions in images. This work proposes a technique to separate text regions from image documents. Images are divided into small non-overlapping windows. Textural features are extracted from these image windows before a classification is performed. Two refinement processes are carried out to reject misclassified windows, i.e window merging and Markov Random Files (MRFs). Window merging determine the similarity of a window and its neighbouring windows (based-on a distance-based technique). MRF examines the relationships between each window and it's neighbouring one using an energy minimization technique. The experimental results demonstrate that the refinement method is superior to the original classification without a refinement.","PeriodicalId":119111,"journal":{"name":"2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI.2017.8279610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Text regions can be useful to computer vision applications. It can be used to label and train automatic layout learning systems or to detect and locate the title, keywords, subheadings, paragraphs and image regions in images. This work proposes a technique to separate text regions from image documents. Images are divided into small non-overlapping windows. Textural features are extracted from these image windows before a classification is performed. Two refinement processes are carried out to reject misclassified windows, i.e window merging and Markov Random Files (MRFs). Window merging determine the similarity of a window and its neighbouring windows (based-on a distance-based technique). MRF examines the relationships between each window and it's neighbouring one using an energy minimization technique. The experimental results demonstrate that the refinement method is superior to the original classification without a refinement.
使用基于分类的技术在文档图像中进行简单的文本检测
文本区域对计算机视觉应用很有用。它可以用于标记和训练自动布局学习系统,也可以用于检测和定位图像中的标题、关键词、副标题、段落和图像区域。这项工作提出了一种从图像文档中分离文本区域的技术。图像被分割成不重叠的小窗口。在进行分类之前,从这些图像窗口中提取纹理特征。采用两个改进过程来拒绝错误分类窗口,即窗口合并和马尔可夫随机文件(mrf)。窗口合并确定窗口及其相邻窗口的相似性(基于基于距离的技术)。MRF使用能量最小化技术检查每个窗口与其相邻窗口之间的关系。实验结果表明,该改进方法优于不进行改进的原始分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信