SIFT-based multi-frame super resolution for 250 million pixel images

Katsuhisa Ogawa, Yuri Yamaguchi, Y. Iwamoto, X. Han, Yenwei Chen
{"title":"SIFT-based multi-frame super resolution for 250 million pixel images","authors":"Katsuhisa Ogawa, Yuri Yamaguchi, Y. Iwamoto, X. Han, Yenwei Chen","doi":"10.1109/CISP-BMEI.2016.7852826","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a SIFT-based multi-frame super resolution for 250 million pixel images. In the proposed method, we first use the SIFT operator to detect key points in each frame. Then we use a closest matching method to find the correspondence among multi-frame images. The corresponding key points are used to register multi-frame images to a reference image, which is randomly selected from the multi-frame images. After registration, we combine the aligned multi-frame images to form a high-quality and high-resolution image. We applied the proposed method to enhance the quality of 250 million pixel images, which is obtained by the Canon's 250Mpixel CMOS-image-sensor.","PeriodicalId":275095,"journal":{"name":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2016.7852826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a SIFT-based multi-frame super resolution for 250 million pixel images. In the proposed method, we first use the SIFT operator to detect key points in each frame. Then we use a closest matching method to find the correspondence among multi-frame images. The corresponding key points are used to register multi-frame images to a reference image, which is randomly selected from the multi-frame images. After registration, we combine the aligned multi-frame images to form a high-quality and high-resolution image. We applied the proposed method to enhance the quality of 250 million pixel images, which is obtained by the Canon's 250Mpixel CMOS-image-sensor.
基于sift的2.5亿像素图像多帧超分辨率
本文提出了一种基于sift的2.5亿像素图像的多帧超分辨率算法。在该方法中,我们首先使用SIFT算子检测每帧中的关键点。然后用最接近匹配的方法找出多帧图像之间的对应关系。使用相应的关键点将多帧图像配准到从多帧图像中随机选择的参考图像。配准后,将对齐后的多帧图像进行组合,形成高质量、高分辨率的图像。我们将该方法应用于佳能的2.5亿像素cmos图像传感器所获得的2.5亿像素图像的质量提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信