Transfer Learning with Semi-Supervised Dataset Annotation for Birdcall Classification

Anthony Miyaguchi, Nathan Zhong, Murilo Gustineli, Christopher Hayduk
{"title":"Transfer Learning with Semi-Supervised Dataset Annotation for Birdcall Classification","authors":"Anthony Miyaguchi, Nathan Zhong, Murilo Gustineli, Christopher Hayduk","doi":"10.48550/arXiv.2306.16760","DOIUrl":null,"url":null,"abstract":"We present working notes on transfer learning with semi-supervised dataset annotation for the BirdCLEF 2023 competition, focused on identifying African bird species in recorded soundscapes. Our approach utilizes existing off-the-shelf models, BirdNET and MixIT, to address representation and labeling challenges in the competition. We explore the embedding space learned by BirdNET and propose a process to derive an annotated dataset for supervised learning. Our experiments involve various models and feature engineering approaches to maximize performance on the competition leaderboard. The results demonstrate the effectiveness of our approach in classifying bird species and highlight the potential of transfer learning and semi-supervised dataset annotation in similar tasks.","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"69 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.16760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present working notes on transfer learning with semi-supervised dataset annotation for the BirdCLEF 2023 competition, focused on identifying African bird species in recorded soundscapes. Our approach utilizes existing off-the-shelf models, BirdNET and MixIT, to address representation and labeling challenges in the competition. We explore the embedding space learned by BirdNET and propose a process to derive an annotated dataset for supervised learning. Our experiments involve various models and feature engineering approaches to maximize performance on the competition leaderboard. The results demonstrate the effectiveness of our approach in classifying bird species and highlight the potential of transfer learning and semi-supervised dataset annotation in similar tasks.
基于半监督数据集标注的迁移学习鸟类叫声分类
我们为BirdCLEF 2023竞赛提供了半监督数据集注释迁移学习的工作笔记,重点是在录制的声音场景中识别非洲鸟类。我们的方法利用现有的现成模型,BirdNET和MixIT,来解决比赛中的表现和标签挑战。我们探索了BirdNET学习的嵌入空间,并提出了一个过程来导出用于监督学习的带注释的数据集。我们的实验涉及各种模型和特征工程方法,以最大化在竞赛排行榜上的表现。结果证明了我们的方法在鸟类分类方面的有效性,并突出了迁移学习和半监督数据集注释在类似任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信