JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images

Mo Chen, V. Sedighi, M. Boroumand, J. Fridrich
{"title":"JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images","authors":"Mo Chen, V. Sedighi, M. Boroumand, J. Fridrich","doi":"10.1145/3082031.3083248","DOIUrl":null,"url":null,"abstract":"Detection of modern JPEG steganographic algorithms has traditionally relied on features aware of the JPEG phase. In this paper, we port JPEG-phase awareness into the architecture of a convolutional neural network to boost the detection accuracy of such detectors. Another innovative concept introduced into the detector is the \"catalyst kernel\" that, together with traditional high-pass filters used to pre-process images allows the network to learn kernels more relevant for detection of stego signal introduced by JPEG steganography. Experiments with J-UNIWARD and UED-JC embedding algorithms are used to demonstrate the merit of the proposed design.","PeriodicalId":431672,"journal":{"name":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3082031.3083248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147

Abstract

Detection of modern JPEG steganographic algorithms has traditionally relied on features aware of the JPEG phase. In this paper, we port JPEG-phase awareness into the architecture of a convolutional neural network to boost the detection accuracy of such detectors. Another innovative concept introduced into the detector is the "catalyst kernel" that, together with traditional high-pass filters used to pre-process images allows the network to learn kernels more relevant for detection of stego signal introduced by JPEG steganography. Experiments with J-UNIWARD and UED-JC embedding algorithms are used to demonstrate the merit of the proposed design.
用于JPEG图像隐写分析的相位感知卷积神经网络
传统上,现代JPEG隐写算法的检测依赖于感知JPEG相位的特征。在本文中,我们将jpeg相位感知移植到卷积神经网络的架构中,以提高此类检测器的检测精度。检测器中引入的另一个创新概念是“催化剂内核”,它与用于预处理图像的传统高通滤波器一起,使网络能够学习与JPEG隐写术引入的隐写信号检测更相关的内核。用J-UNIWARD和ed - jc嵌入算法进行了实验,验证了所提设计的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信