{"title":"JPEG-Phase-Aware Convolutional Neural Network for Steganalysis of JPEG Images","authors":"Mo Chen, V. Sedighi, M. Boroumand, J. Fridrich","doi":"10.1145/3082031.3083248","DOIUrl":null,"url":null,"abstract":"Detection of modern JPEG steganographic algorithms has traditionally relied on features aware of the JPEG phase. In this paper, we port JPEG-phase awareness into the architecture of a convolutional neural network to boost the detection accuracy of such detectors. Another innovative concept introduced into the detector is the \"catalyst kernel\" that, together with traditional high-pass filters used to pre-process images allows the network to learn kernels more relevant for detection of stego signal introduced by JPEG steganography. Experiments with J-UNIWARD and UED-JC embedding algorithms are used to demonstrate the merit of the proposed design.","PeriodicalId":431672,"journal":{"name":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3082031.3083248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147
Abstract
Detection of modern JPEG steganographic algorithms has traditionally relied on features aware of the JPEG phase. In this paper, we port JPEG-phase awareness into the architecture of a convolutional neural network to boost the detection accuracy of such detectors. Another innovative concept introduced into the detector is the "catalyst kernel" that, together with traditional high-pass filters used to pre-process images allows the network to learn kernels more relevant for detection of stego signal introduced by JPEG steganography. Experiments with J-UNIWARD and UED-JC embedding algorithms are used to demonstrate the merit of the proposed design.