Robust total least squares by the nonlinear MCA EXIN neuron

G. Cirrincione, M. Cirrincione
{"title":"Robust total least squares by the nonlinear MCA EXIN neuron","authors":"G. Cirrincione, M. Cirrincione","doi":"10.1109/IJSIS.1998.685463","DOIUrl":null,"url":null,"abstract":"The robust version of the MCA EXIN linear neuron is introduced in order to solve typical minor component problems as the total least squares fitting in presence of impulsive and colored noise environments or in presence of outliers, i.e. in nonoptimal conditions for the traditional approaches. Furthermore, an analysis of the divergence of the robust neurons is made. The simulations show the better features of the NMCA EXIN neuron w.r.t. the existing nonneural and neural approaches, even in the case of high Gaussian noise together with strong outliers. This allows the use of this neuron for some very difficult problems, like in computer vision, just giving the possibility of massively high parallel architectures.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The robust version of the MCA EXIN linear neuron is introduced in order to solve typical minor component problems as the total least squares fitting in presence of impulsive and colored noise environments or in presence of outliers, i.e. in nonoptimal conditions for the traditional approaches. Furthermore, an analysis of the divergence of the robust neurons is made. The simulations show the better features of the NMCA EXIN neuron w.r.t. the existing nonneural and neural approaches, even in the case of high Gaussian noise together with strong outliers. This allows the use of this neuron for some very difficult problems, like in computer vision, just giving the possibility of massively high parallel architectures.
非线性MCA EXIN神经元鲁棒总最小二乘
引入了MCA EXIN线性神经元的鲁棒版本,以解决存在脉冲和彩色噪声环境或存在异常值的典型小分量问题,即传统方法的非最优条件下的总最小二乘拟合。此外,对鲁棒神经元的散度进行了分析。仿真结果表明,即使在高高斯噪声和强异常值的情况下,NMCA EXIN神经元也比现有的非神经和神经方法具有更好的特征。这允许使用这个神经元来解决一些非常困难的问题,比如计算机视觉,只是提供了大规模高并行架构的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信