Multi-Objective Optimization of ECG Process Applying Soft Computing Techniques

Pritam Pain, G. Bose
{"title":"Multi-Objective Optimization of ECG Process Applying Soft Computing Techniques","authors":"Pritam Pain, G. Bose","doi":"10.4018/978-1-5225-5709-8.CH004","DOIUrl":null,"url":null,"abstract":"The present research work focuses on the selection of significant machining parameters depending on the nature-inspired algorithm while machining alumina-aluminum interpenetrating phase composites during electrochemical grinding. Control parameters like electrolyte concentration (C), voltage (V), depth of cut (D) and electrolyte flow rate (F) have been considered for experimentation. The response data are initially trained and tested by using Artificial Neural Network. The contradictory responses like higher material removal rate (MRR), lower surface roughness (Ra), lower overcut (OC) and lower cutting force (Fc) are ensured individually by employing Firefly Algorithm. A multi-response optimization for all the responses is done initially by using the Genetic algorithm. Finally, in order to obtain a single set of parametric combination for all the output simultaneously fuzzy based Grey Relational Analysis technique is adopted. These natures driven soft computing techniques corroborates well during the parametric optimization of the electrochemical grinding process.","PeriodicalId":326058,"journal":{"name":"Advanced Fuzzy Logic Approaches in Engineering Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fuzzy Logic Approaches in Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-5709-8.CH004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present research work focuses on the selection of significant machining parameters depending on the nature-inspired algorithm while machining alumina-aluminum interpenetrating phase composites during electrochemical grinding. Control parameters like electrolyte concentration (C), voltage (V), depth of cut (D) and electrolyte flow rate (F) have been considered for experimentation. The response data are initially trained and tested by using Artificial Neural Network. The contradictory responses like higher material removal rate (MRR), lower surface roughness (Ra), lower overcut (OC) and lower cutting force (Fc) are ensured individually by employing Firefly Algorithm. A multi-response optimization for all the responses is done initially by using the Genetic algorithm. Finally, in order to obtain a single set of parametric combination for all the output simultaneously fuzzy based Grey Relational Analysis technique is adopted. These natures driven soft computing techniques corroborates well during the parametric optimization of the electrochemical grinding process.
应用软计算技术的心电过程多目标优化
目前的研究工作主要集中在电化学磨削加工铝-铝互穿相复合材料时,基于自然启发算法选择重要的加工参数。实验考虑了电解质浓度(C)、电压(V)、切割深度(D)和电解质流速(F)等控制参数。利用人工神经网络对响应数据进行初步训练和测试。采用萤火虫算法分别保证了较高的材料去除率(MRR)、较低的表面粗糙度(Ra)、较低的过切量(OC)和较低的切削力(Fc)等矛盾响应。首先利用遗传算法对所有响应进行多响应优化。最后,采用基于模糊的灰色关联分析技术对所有输出同时获得一组参数组合。这些性质驱动的软计算技术在电化学磨削过程的参数优化中得到了很好的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信