Margaret Krieger, Aayod Kaul, Dailen C. Brown, Haroula M. Tzamaras, J. Moore, Scarlett R. Miller
{"title":"DESIGN OF AN INSERTION FUNNEL FOR A TRAINING SYSTEM FOR CENTRAL VENOUS CATHETER GUIDEWIRE INSERTION","authors":"Margaret Krieger, Aayod Kaul, Dailen C. Brown, Haroula M. Tzamaras, J. Moore, Scarlett R. Miller","doi":"10.1115/dmd2023-7767","DOIUrl":null,"url":null,"abstract":"\n A novel concept is proposed to effectively measure and train central venous catheter guidewire insertion. This system utilizes a 3D printed funnel to direct the insertion of a guidewire from multiple angles and positions. This directed guidewire can then be passed through previously developed sensors to provide the user with valuable training feedback. Experiments are performed to measure the effectiveness of the funnel system under varying insertion positions, angles, and funnel coatings. After experimentation, it was found that a funnel greased with white lithium grease allows the guidewire to successfully make it through the funnel compared to alternatives tested. This design will be applied to the Dynamic Haptic Robotic Trainer Plus (DHRT+) system to train medical residents to safely perform central venous catheterization.","PeriodicalId":325836,"journal":{"name":"2023 Design of Medical Devices Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design of Medical Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dmd2023-7767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel concept is proposed to effectively measure and train central venous catheter guidewire insertion. This system utilizes a 3D printed funnel to direct the insertion of a guidewire from multiple angles and positions. This directed guidewire can then be passed through previously developed sensors to provide the user with valuable training feedback. Experiments are performed to measure the effectiveness of the funnel system under varying insertion positions, angles, and funnel coatings. After experimentation, it was found that a funnel greased with white lithium grease allows the guidewire to successfully make it through the funnel compared to alternatives tested. This design will be applied to the Dynamic Haptic Robotic Trainer Plus (DHRT+) system to train medical residents to safely perform central venous catheterization.