Training RBF neural networks on unbalanced data

Xiuju Fu, Lipo Wang, K. Chua, Feng Chu
{"title":"Training RBF neural networks on unbalanced data","authors":"Xiuju Fu, Lipo Wang, K. Chua, Feng Chu","doi":"10.1109/ICONIP.2002.1198214","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for the construction and training of an RBF neural network with unbalanced data. In applications, minority classes with much fewer samples are often present in data sets. The learning process of a neural network usually is biased towards classes with majority populations. Our study focused on improving the classification accuracy of minority classes while maintaining the overall classification performance.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

This paper presents a new algorithm for the construction and training of an RBF neural network with unbalanced data. In applications, minority classes with much fewer samples are often present in data sets. The learning process of a neural network usually is biased towards classes with majority populations. Our study focused on improving the classification accuracy of minority classes while maintaining the overall classification performance.
在不平衡数据上训练RBF神经网络
本文提出了一种构造和训练非平衡RBF神经网络的新算法。在应用程序中,数据集中经常出现样本少得多的少数类。神经网络的学习过程通常偏向于拥有多数人口的班级。我们的研究重点是在保持整体分类性能的同时,提高少数类的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信