Manuele Rusci, D. Rossi, M. Lecca, M. Gottardi, L. Benini, Elisabetta Farella
{"title":"Energy-efficient design of an always-on smart visual trigger","authors":"Manuele Rusci, D. Rossi, M. Lecca, M. Gottardi, L. Benini, Elisabetta Farella","doi":"10.1109/ISC2.2016.7580824","DOIUrl":null,"url":null,"abstract":"In this work, we present the design of an always-on smart visual trigger. To maximize the energy-efficiency, the whole system is kept in stand-by mode until a significant information is detected by the early-processing of the low-power imager. Within two considered scenarios of vehicle detection, the system runs at minimal power consumption for 84% and 39% of the time. When active, the generation of triggers due to relevant events is conducted by analyzing the trajectory of multiple tracked objects. A parallel event-driven implementation speeds-up the digital computation and leads to a duty cycle below 1% over the frame period. The optimized power management is enabled by defining an always-on camera interface for the System-on-Chip (SoC) processor, which is able to individually activate both the sensor and the processor while running at minimal power consumption. In the considered case-study of vehicle detection, an estimated power consumption of up to 23μW is accounted, depending on the context-activity, and the smart triggers fails one detection over 72 moving vehicles.","PeriodicalId":171503,"journal":{"name":"2016 IEEE International Smart Cities Conference (ISC2)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2016.7580824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work, we present the design of an always-on smart visual trigger. To maximize the energy-efficiency, the whole system is kept in stand-by mode until a significant information is detected by the early-processing of the low-power imager. Within two considered scenarios of vehicle detection, the system runs at minimal power consumption for 84% and 39% of the time. When active, the generation of triggers due to relevant events is conducted by analyzing the trajectory of multiple tracked objects. A parallel event-driven implementation speeds-up the digital computation and leads to a duty cycle below 1% over the frame period. The optimized power management is enabled by defining an always-on camera interface for the System-on-Chip (SoC) processor, which is able to individually activate both the sensor and the processor while running at minimal power consumption. In the considered case-study of vehicle detection, an estimated power consumption of up to 23μW is accounted, depending on the context-activity, and the smart triggers fails one detection over 72 moving vehicles.