Improving the Early Warning Function of Civil War Onset Models Using Automated Event Data

H. Roos, Artur N. Usanov, N. Farnham, T. Sweijs
{"title":"Improving the Early Warning Function of Civil War Onset Models Using Automated Event Data","authors":"H. Roos, Artur N. Usanov, N. Farnham, T. Sweijs","doi":"10.2139/ssrn.2948293","DOIUrl":null,"url":null,"abstract":"This research note explains our approach to political violence forecasting employing a combination of structural and automated event data. We have created four civil war onset models using data from 1979-1999 (in sample), which we then use to predict the onset of civil war from 2000-2015 (out-of-sample). Our time horizon is one month into the future. The predictive performance of our best model as measured by its area under the receiver operating characteristic (ROC) curve is 0.881. All 24 conflict onsets between 2000-2015 occurred within countries in the top half of our risk ranking, with 79% of these onsets falling in the top 20% category, and 58% in the top 10% category. Our findings suggest that models incorporating both structural and automated event data have significantly stronger predictive power than those that rely exclusively on structural data. Conclusions and guidelines for future research are provided on the basis of our results.","PeriodicalId":169291,"journal":{"name":"PSN: Computational Models (Quantitative) (Topic)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Computational Models (Quantitative) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2948293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research note explains our approach to political violence forecasting employing a combination of structural and automated event data. We have created four civil war onset models using data from 1979-1999 (in sample), which we then use to predict the onset of civil war from 2000-2015 (out-of-sample). Our time horizon is one month into the future. The predictive performance of our best model as measured by its area under the receiver operating characteristic (ROC) curve is 0.881. All 24 conflict onsets between 2000-2015 occurred within countries in the top half of our risk ranking, with 79% of these onsets falling in the top 20% category, and 58% in the top 10% category. Our findings suggest that models incorporating both structural and automated event data have significantly stronger predictive power than those that rely exclusively on structural data. Conclusions and guidelines for future research are provided on the basis of our results.
利用自动事件数据改进内战爆发模型的预警功能
这份研究报告解释了我们采用结构化和自动化事件数据相结合的政治暴力预测方法。我们使用1979-1999年(样本内)的数据创建了四个内战开始模型,然后我们使用这些模型来预测2000-2015年(样本外)的内战开始。我们的时间范围是未来一个月。我们的最佳模型的预测性能由其在受试者工作特征(ROC)曲线下的面积测量为0.881。2000年至2015年期间发生的所有24起冲突都发生在我们风险排名上半部分的国家内,其中79%属于前20%类别,58%属于前10%类别。我们的研究结果表明,结合结构和自动化事件数据的模型比完全依赖结构数据的模型具有更强的预测能力。在此基础上得出结论,并为今后的研究提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信