{"title":"Detached Eddy Simulation of Rotating Instabilities in a Low-Pressure Model Steam Turbine Operating Under Low Volume Flow Conditions","authors":"Ilgit Ercan, D. Vogt","doi":"10.1115/gt2021-58704","DOIUrl":null,"url":null,"abstract":"\n Rotating instability (RI) in steam turbines is a phenomenon occurring during operation at very low volume flow conditions. Whereas RI is well-known in compressors, it is rather uncommon in turbines, where it is limited to the last stages of low-pressure steam turbines. The phenomenon has been studied numerically by means of viscous 3D CFD simulations employing mainly URANS equations. Given the possible difficulties to accurately predict heavily separated flows using such methods, this paper deals with the question whether the more sophisticated Improved Delayed Detached Eddy Simulation (iDDES) model is applicable in an industrial environment and whether it is capable of capturing the complex unsteady flow physics in a more realistic manner. For this purpose, the commercial CFD solver STAR-CCM+ is employed.\n A three-stage low-pressure model steam turbine featuring a non-axisymmetric inlet and an axial-radial diffuser is used as a test object. In order to capture the asymmetry, the model spans the full annulus and comprises the inlet section, all three stages, the diffuser as well as the exhaust hood. URANS and iDDES simulations have been performed at various low-volume flow part-load operating points and compared to test data. Unsteady pressure fluctuations at the casing as well as time-resolved probe traverse data have been used to validate the simulations. It is found that both models capture the overall flow physics well and that the iDDES model is superior at the most extreme part-load operating condition.\n In addition to the model accuracy and applicability of the CFD tool used, the paper discusses the challenges encountered during simulation setup as well as during initialization.","PeriodicalId":252904,"journal":{"name":"Volume 8: Oil and Gas Applications; Steam Turbine","volume":"42 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Oil and Gas Applications; Steam Turbine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Rotating instability (RI) in steam turbines is a phenomenon occurring during operation at very low volume flow conditions. Whereas RI is well-known in compressors, it is rather uncommon in turbines, where it is limited to the last stages of low-pressure steam turbines. The phenomenon has been studied numerically by means of viscous 3D CFD simulations employing mainly URANS equations. Given the possible difficulties to accurately predict heavily separated flows using such methods, this paper deals with the question whether the more sophisticated Improved Delayed Detached Eddy Simulation (iDDES) model is applicable in an industrial environment and whether it is capable of capturing the complex unsteady flow physics in a more realistic manner. For this purpose, the commercial CFD solver STAR-CCM+ is employed.
A three-stage low-pressure model steam turbine featuring a non-axisymmetric inlet and an axial-radial diffuser is used as a test object. In order to capture the asymmetry, the model spans the full annulus and comprises the inlet section, all three stages, the diffuser as well as the exhaust hood. URANS and iDDES simulations have been performed at various low-volume flow part-load operating points and compared to test data. Unsteady pressure fluctuations at the casing as well as time-resolved probe traverse data have been used to validate the simulations. It is found that both models capture the overall flow physics well and that the iDDES model is superior at the most extreme part-load operating condition.
In addition to the model accuracy and applicability of the CFD tool used, the paper discusses the challenges encountered during simulation setup as well as during initialization.