The effect of gravitational field on photon frequency:a fresh look at the photon

Robert L. Kosson, D. Sc
{"title":"The effect of gravitational field on photon frequency:a fresh look at the photon","authors":"Robert L. Kosson, D. Sc","doi":"10.15406/paij.2022.06.00246","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a new description of the photon. The photon is postulated to be a rotating dipole, consisting of two masses, one with a positive charge and the other a negative charge. This conceptualization of the photon permits a parsimonious explanation of both the wave and particle properties of light while providing a straightforward hypothesis for the increased red shift associated with the early stages of the universe. In addition, if measurements could be made of the red shift associated with photons being drawn into a black hole, such measurements might aid in estimating the strength of the associated gravitational gradient.","PeriodicalId":377724,"journal":{"name":"Physics & Astronomy International Journal","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics & Astronomy International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/paij.2022.06.00246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to present a new description of the photon. The photon is postulated to be a rotating dipole, consisting of two masses, one with a positive charge and the other a negative charge. This conceptualization of the photon permits a parsimonious explanation of both the wave and particle properties of light while providing a straightforward hypothesis for the increased red shift associated with the early stages of the universe. In addition, if measurements could be made of the red shift associated with photons being drawn into a black hole, such measurements might aid in estimating the strength of the associated gravitational gradient.
引力场对光子频率的影响:对光子的新认识
本文的目的是提出对光子的一种新的描述。光子被假定为一个旋转的偶极子,由两个质量组成,一个带正电荷,另一个带负电荷。光子的这种概念化允许光的波和粒子特性的简洁解释,同时为与宇宙早期阶段相关的红移增加提供了一个简单的假设。此外,如果可以测量与光子被吸入黑洞有关的红移,这种测量可能有助于估计相关引力梯度的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信