{"title":"The Birthday Problem: Bayesian Inference with Multiple Discrete Hypotheses","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0006","DOIUrl":null,"url":null,"abstract":"The “Birthday Problem” expands consideration from two hypotheses to multiple, discrete hypotheses. In this chapter, interest is in determining the posterior probability that a woman named Mary was born in a given month; there are twelve alternative hypotheses. Furthermore, consideration is given to assigning prior probabilities. The priors represent a priori probabilities that each alternative hypothesis is correct, where a priori means “prior to data collection,” and can be “informative” or “non-informative.” A Bayesian analysis cannot be conducted without using a prior distribution, whether that is an informative prior distribution or a non-informative prior distribution. The chapter discusses objective priors, subjective priors, and prior sensitivity analysis. In addition, the concept of likelihood is explored more deeply.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The “Birthday Problem” expands consideration from two hypotheses to multiple, discrete hypotheses. In this chapter, interest is in determining the posterior probability that a woman named Mary was born in a given month; there are twelve alternative hypotheses. Furthermore, consideration is given to assigning prior probabilities. The priors represent a priori probabilities that each alternative hypothesis is correct, where a priori means “prior to data collection,” and can be “informative” or “non-informative.” A Bayesian analysis cannot be conducted without using a prior distribution, whether that is an informative prior distribution or a non-informative prior distribution. The chapter discusses objective priors, subjective priors, and prior sensitivity analysis. In addition, the concept of likelihood is explored more deeply.