Seg-Edge Bilateral Constraint Network for Iris Segmentation

Junxing Hu, Hui Zhang, Lihu Xiao, Jing Liu, Xingguang Li, Zhaofeng He, Ling Li
{"title":"Seg-Edge Bilateral Constraint Network for Iris Segmentation","authors":"Junxing Hu, Hui Zhang, Lihu Xiao, Jing Liu, Xingguang Li, Zhaofeng He, Ling Li","doi":"10.1109/ICB45273.2019.8987405","DOIUrl":null,"url":null,"abstract":"Iris semantic segmentation in less-constrained scenarios is the basis of iris recognition. We propose an end-to-end trainable model for iris segmentation, namely Seg-Edge bilateral constraint network (SEN). The SEN uses the edge map and the coarse segmentation to constrain and optimize mutually to produce accurate iris segmentation results. The iris edge map generated from low level convolutional layers passes detailed edge information to iris segmentation, and the iris region generated by high level semantic segmentation constrains the edge filtering scope which makes the edge aware focusing on interesting objects. Moreover, we propose pruning filters and corresponding feature maps that are identified as useless by l1-norm, which results in a lightweight iris segmentation network while keeping the performance almost intact or even better. Experimental results suggest that the proposed method outperforms the state-of-the-art iris segmentation methods.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Iris semantic segmentation in less-constrained scenarios is the basis of iris recognition. We propose an end-to-end trainable model for iris segmentation, namely Seg-Edge bilateral constraint network (SEN). The SEN uses the edge map and the coarse segmentation to constrain and optimize mutually to produce accurate iris segmentation results. The iris edge map generated from low level convolutional layers passes detailed edge information to iris segmentation, and the iris region generated by high level semantic segmentation constrains the edge filtering scope which makes the edge aware focusing on interesting objects. Moreover, we propose pruning filters and corresponding feature maps that are identified as useless by l1-norm, which results in a lightweight iris segmentation network while keeping the performance almost intact or even better. Experimental results suggest that the proposed method outperforms the state-of-the-art iris segmentation methods.
虹膜分割的Seg-Edge双边约束网络
无约束场景下的虹膜语义分割是虹膜识别的基础。我们提出了一种端到端可训练的虹膜分割模型,即Seg-Edge双边约束网络(SEN)。SEN使用边缘映射和粗分割相互约束和优化,以产生准确的虹膜分割结果。低层卷积层生成的虹膜边缘图将详细的边缘信息传递给虹膜分割,高层语义分割生成的虹膜区域约束了边缘滤波的范围,使得边缘感知集中在感兴趣的对象上。此外,我们提出了被11范数识别为无用的剪枝滤波器和相应的特征映射,从而在保持性能几乎不变甚至更好的情况下获得了轻量级的虹膜分割网络。实验结果表明,该方法优于现有的虹膜分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信