Predicting Cognitive Load with Wearable Sensor Signals

Olha Shaposhnyk, S. Yanushkevich
{"title":"Predicting Cognitive Load with Wearable Sensor Signals","authors":"Olha Shaposhnyk, S. Yanushkevich","doi":"10.1109/CAI54212.2023.00063","DOIUrl":null,"url":null,"abstract":"This research focuses on predicting the affective state, such as a cognitive load of a person performing cognitive tasks. The predictors included the physiological data, demographics, and personality type available in the CogLoad dataset. Specifically, the chosen physiological data included heart rate, intervals between successive heartbeats, galvanic-skin response, and temperature. We experimented with several machine-learning models. Among the classifiers, the LightGBM achieved the best accuracy of 74.41% and F1-score of 77.10% in detecting the cognitive load.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on predicting the affective state, such as a cognitive load of a person performing cognitive tasks. The predictors included the physiological data, demographics, and personality type available in the CogLoad dataset. Specifically, the chosen physiological data included heart rate, intervals between successive heartbeats, galvanic-skin response, and temperature. We experimented with several machine-learning models. Among the classifiers, the LightGBM achieved the best accuracy of 74.41% and F1-score of 77.10% in detecting the cognitive load.
用可穿戴传感器信号预测认知负荷
这项研究的重点是预测情感状态,比如一个人执行认知任务时的认知负荷。预测因子包括CogLoad数据集中的生理数据、人口统计数据和人格类型。具体来说,选择的生理数据包括心率、连续心跳间隔、皮肤电反应和温度。我们试验了几个机器学习模型。其中,LightGBM对认知负荷的检测准确率为74.41%,f1评分为77.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信