Trajectory Tracking Control for a Kinematic Bicycle Model

A. Ailon, S. Arogeti
{"title":"Trajectory Tracking Control for a Kinematic Bicycle Model","authors":"A. Ailon, S. Arogeti","doi":"10.1109/MED48518.2020.9183161","DOIUrl":null,"url":null,"abstract":"This paper deals with the trajectory tracking control problem in the kinematic bicycle model. To avoid possible singular states in the control system for the model under consideration we apply a sigmoid function (hyperbolic tangent) in the feedback loop. We present an error function between the real and virtual vehicles that follows the required trajectory, and introduce a control law that stabilizes asymptotically the zero error state in the error dynamics. In addition, the proposed algorithm allows us to handle the control problem in cases where actuator saturations and state constraints exist. The paper is concluded with an example that demonstrate the characteristics of the control law and its performance.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"56 78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with the trajectory tracking control problem in the kinematic bicycle model. To avoid possible singular states in the control system for the model under consideration we apply a sigmoid function (hyperbolic tangent) in the feedback loop. We present an error function between the real and virtual vehicles that follows the required trajectory, and introduce a control law that stabilizes asymptotically the zero error state in the error dynamics. In addition, the proposed algorithm allows us to handle the control problem in cases where actuator saturations and state constraints exist. The paper is concluded with an example that demonstrate the characteristics of the control law and its performance.
运动自行车模型的轨迹跟踪控制
研究了运动自行车模型的轨迹跟踪控制问题。为了避免所考虑的模型控制系统中可能出现的奇异状态,我们在反馈回路中应用了一个s型函数(双曲正切)。在误差动力学中,给出了真实车辆与虚拟车辆沿要求轨迹运动的误差函数,并引入了一种渐近稳定零误差状态的控制律。此外,提出的算法允许我们处理在执行器饱和和状态约束存在的情况下的控制问题。最后通过一个算例说明了该控制律的特点及其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信