Multi-Feature Based Emotion Recognition for Video Clips

Chuanhe Liu, Tianhao Tang, Kui Lv, Minghao Wang
{"title":"Multi-Feature Based Emotion Recognition for Video Clips","authors":"Chuanhe Liu, Tianhao Tang, Kui Lv, Minghao Wang","doi":"10.1145/3242969.3264989","DOIUrl":null,"url":null,"abstract":"In this paper, we present our latest progress in Emotion Recognition techniques, which combines acoustic features and facial features in both non-temporal and temporal mode. This paper presents the details of our techniques used in the Audio-Video Emotion Recognition subtask in the 2018 Emotion Recognition in the Wild (EmotiW) Challenge. After the multimodal results fusion, our final accuracy in Acted Facial Expression in Wild (AFEW) test dataset achieves 61.87%, which is 1.53% higher than the best results last year. Such improvements prove the effectiveness of our methods.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3264989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

In this paper, we present our latest progress in Emotion Recognition techniques, which combines acoustic features and facial features in both non-temporal and temporal mode. This paper presents the details of our techniques used in the Audio-Video Emotion Recognition subtask in the 2018 Emotion Recognition in the Wild (EmotiW) Challenge. After the multimodal results fusion, our final accuracy in Acted Facial Expression in Wild (AFEW) test dataset achieves 61.87%, which is 1.53% higher than the best results last year. Such improvements prove the effectiveness of our methods.
基于多特征的视频片段情感识别
本文介绍了在非时间和时间模式下结合声音特征和面部特征的情绪识别技术的最新进展。本文介绍了我们在2018年野外情感识别挑战赛(EmotiW)中音频-视频情感识别子任务中使用的技术细节。经过多模态结果融合后,我们在act Facial Expression in Wild (AFEW)测试数据集中的最终准确率达到了61.87%,比去年的最佳结果提高了1.53%。这些改进证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信