Dependence-Robust Inference Using Resampled Statistics

Michael P. Leung
{"title":"Dependence-Robust Inference Using Resampled Statistics","authors":"Michael P. Leung","doi":"10.2139/ssrn.3036626","DOIUrl":null,"url":null,"abstract":"We develop inference procedures robust to general forms of weak dependence. These involve test statistics constructed by resampling data in a manner that does not depend on the unknown correlation structure of the data. The statistics are simple to compute and asymptotically normal under the weak requirement that the target parameter can be consistently estimated at the parametric rate. This requirement holds for regular estimators under many well-known forms of weak dependence and justifies the claim of dependence-robustness. We consider applications to settings with unknown or complicated forms of dependence, with various forms network dependence as leading examples. We develop tests for both moment equalities and inequalities.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3036626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop inference procedures robust to general forms of weak dependence. These involve test statistics constructed by resampling data in a manner that does not depend on the unknown correlation structure of the data. The statistics are simple to compute and asymptotically normal under the weak requirement that the target parameter can be consistently estimated at the parametric rate. This requirement holds for regular estimators under many well-known forms of weak dependence and justifies the claim of dependence-robustness. We consider applications to settings with unknown or complicated forms of dependence, with various forms network dependence as leading examples. We develop tests for both moment equalities and inequalities.
使用重采样统计的依赖稳健推理
我们开发了对一般形式的弱依赖具有鲁棒性的推理程序。这些包括通过以一种不依赖于数据的未知相关结构的方式重新采样数据而构建的测试统计。该统计量计算简单,在目标参数能以参数率一致估计的弱要求下渐近正态化。这一要求适用于许多众所周知的弱依赖性形式下的正则估计,并证明了依赖性-鲁棒性的说法。我们考虑应用于未知或复杂形式的依赖设置,以各种形式的网络依赖为主要例子。我们开发了矩等式和不等式的检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信