B. Loveday, T. Smyth, A. Akpınar, T. Hull, M. Inall, J. Kaiser, B. Queste, Matt Tobermann, C. Williams, M. Palmer
{"title":"Daily to annual net primary production in the North Sea determined using autonomous underwater gliders and satellite Earth observation","authors":"B. Loveday, T. Smyth, A. Akpınar, T. Hull, M. Inall, J. Kaiser, B. Queste, Matt Tobermann, C. Williams, M. Palmer","doi":"10.5194/essd-2021-311","DOIUrl":null,"url":null,"abstract":"Abstract. Shelf-seas play a key role in both the global carbon cycle and coastal marine ecosystems through the drawn-down and fixing of carbon, as measured through phytoplankton net primary production (NPP). Measuring NPP in situ, and extrapolating this to the local, regional and global scale presents challenges however because of limitations with the techniques utilised (e.g. radiocarbon isotopes), data sparsity and the inherent biogeochemical heterogeneity of coastal and open-shelf waters. Here, we introduce a powerful new technique based on the synergistic use of in situ glider profiles and satellite Earth Observation measurements which can be implemented in a real-time or delayed mode system. We apply this system to a fleet of gliders successively deployed over a 19-month time-frame in the North Sea, generating an unprecedented fine scale time-series of NPP in the region (Loveday and Smyth, 2020). At the large-scale, this time-series gives close agreement with existing satellite-based estimates of NPP for the region and previous in situ estimates. What has not been elucidated before is the high-frequency, small-scale, depth-resolved variability associated with bloom phenology, mesoscale phenomena and mixed layer dynamics.\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Shelf-seas play a key role in both the global carbon cycle and coastal marine ecosystems through the drawn-down and fixing of carbon, as measured through phytoplankton net primary production (NPP). Measuring NPP in situ, and extrapolating this to the local, regional and global scale presents challenges however because of limitations with the techniques utilised (e.g. radiocarbon isotopes), data sparsity and the inherent biogeochemical heterogeneity of coastal and open-shelf waters. Here, we introduce a powerful new technique based on the synergistic use of in situ glider profiles and satellite Earth Observation measurements which can be implemented in a real-time or delayed mode system. We apply this system to a fleet of gliders successively deployed over a 19-month time-frame in the North Sea, generating an unprecedented fine scale time-series of NPP in the region (Loveday and Smyth, 2020). At the large-scale, this time-series gives close agreement with existing satellite-based estimates of NPP for the region and previous in situ estimates. What has not been elucidated before is the high-frequency, small-scale, depth-resolved variability associated with bloom phenology, mesoscale phenomena and mixed layer dynamics.