Iván Sermanoukian Molina, Lluís Montilla Rodríguez, David González Díez, Miquel Sureda Anfres, Jorge Mata Diaz, Juan José Alins Delgado
{"title":"Mission analysis of nanosatellite constellations with OpenSatKit","authors":"Iván Sermanoukian Molina, Lluís Montilla Rodríguez, David González Díez, Miquel Sureda Anfres, Jorge Mata Diaz, Juan José Alins Delgado","doi":"10.5821/conference-9788419184405.006","DOIUrl":null,"url":null,"abstract":"CubeSat reliability is still considered an obstacle due to the sizeable fail rates generally attributed to the dead-on-arrival cases and early subsystem malfunctions. Thus, as CubeSats' primary purpose moves from technological demonstrations and university projects to missions where a significant risk of failure is not acceptable, an inexpensive method to emulate low Earth orbit constellations is being researched. The results presented have been developed in the framework of the PLATHON research project, which intends to develop a hardware-in-the-loop emulation platform for nanosatellite constellations with optical inter-satellite communication and ground-to-satellite links. Consequently, a crucial aspect of this project is to have a sufficiently precise orbital propagator with real-time manoeuvring control and graphical representation. NASA's OpenSatKit, a multi-faceted open-source platform with an inbuilt propagator known as 42, has been chosen to analyse the programme's feasibility in order to create a constellation testing bench. As an initial development of a software-in-the-loop application, the pre- processing of files has been automated; enhanced Attitude Determination and Control System manoeuvres have been added and configured through bidirectional socket interfaces, and the results format has been modified to be easily post-processed with MATLAB and Simulink","PeriodicalId":340665,"journal":{"name":"4th Symposium on Space Educational Activities","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th Symposium on Space Educational Activities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5821/conference-9788419184405.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
CubeSat reliability is still considered an obstacle due to the sizeable fail rates generally attributed to the dead-on-arrival cases and early subsystem malfunctions. Thus, as CubeSats' primary purpose moves from technological demonstrations and university projects to missions where a significant risk of failure is not acceptable, an inexpensive method to emulate low Earth orbit constellations is being researched. The results presented have been developed in the framework of the PLATHON research project, which intends to develop a hardware-in-the-loop emulation platform for nanosatellite constellations with optical inter-satellite communication and ground-to-satellite links. Consequently, a crucial aspect of this project is to have a sufficiently precise orbital propagator with real-time manoeuvring control and graphical representation. NASA's OpenSatKit, a multi-faceted open-source platform with an inbuilt propagator known as 42, has been chosen to analyse the programme's feasibility in order to create a constellation testing bench. As an initial development of a software-in-the-loop application, the pre- processing of files has been automated; enhanced Attitude Determination and Control System manoeuvres have been added and configured through bidirectional socket interfaces, and the results format has been modified to be easily post-processed with MATLAB and Simulink