Near-field source localization: Sparse recovery techniques and grid matching

K. Hu, S. P. Chepuri, G. Leus
{"title":"Near-field source localization: Sparse recovery techniques and grid matching","authors":"K. Hu, S. P. Chepuri, G. Leus","doi":"10.1109/SAM.2014.6882418","DOIUrl":null,"url":null,"abstract":"Near-field source localization is a joint direction-of-arrival (DOA) and range estimation problem. Leveraging the sparsity of the spatial spectrum, and gridding along the DOA and range domain, the near-field source localization problem can be casted as a linear sparse regression problem. However, this would result in a very large dictionary. Using the Fresnel-approximation, the DOA and range naturally decouple in the correlation domain. This allows us to solve two inverse problems of a smaller dimension instead of one higher dimensional problem. Furthermore, the sources need not be exactly on the predefined sampling grid. We use a mismatch model to cope with such off-grid sources and present estimators for grid matching.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Near-field source localization is a joint direction-of-arrival (DOA) and range estimation problem. Leveraging the sparsity of the spatial spectrum, and gridding along the DOA and range domain, the near-field source localization problem can be casted as a linear sparse regression problem. However, this would result in a very large dictionary. Using the Fresnel-approximation, the DOA and range naturally decouple in the correlation domain. This allows us to solve two inverse problems of a smaller dimension instead of one higher dimensional problem. Furthermore, the sources need not be exactly on the predefined sampling grid. We use a mismatch model to cope with such off-grid sources and present estimators for grid matching.
近场源定位:稀疏恢复技术和网格匹配
近场源定位是一个到达方向和距离估计的联合问题。利用空间频谱的稀疏性,沿DOA域和距离域进行网格化,近场源定位问题可以转化为线性稀疏回归问题。然而,这将导致一个非常大的字典。使用菲涅耳近似,DOA和距离在相关域中自然解耦。这允许我们解决两个较小维度的逆问题,而不是一个高维问题。此外,源不需要完全在预定义的采样网格上。我们使用不匹配模型来处理这种离网源,并提出了网格匹配的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信