Data-driven Differential Games for Affine Nonlinear Systems

Conghui Ma, Bin Zhang, Lutao Yan, Haiyuan Li
{"title":"Data-driven Differential Games for Affine Nonlinear Systems","authors":"Conghui Ma, Bin Zhang, Lutao Yan, Haiyuan Li","doi":"10.1109/IC-NIDC54101.2021.9660508","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven optimal approach based on differential dynamic programming (DDP) for two-person differential game of nonlinear affine systems. Using test data, the Hamilton-Jacobi-Isaacs (HJI) equation is expanded into a set of high-order differential equations. Basis functions is adopted to approximate the unknown system function and value function. Based on the approximation, a data-driven optimal approach is proposed to obtain the unknown coefficients of the basis functions. A numerical example is proposed to demonstrate the effectiveness of this method.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a data-driven optimal approach based on differential dynamic programming (DDP) for two-person differential game of nonlinear affine systems. Using test data, the Hamilton-Jacobi-Isaacs (HJI) equation is expanded into a set of high-order differential equations. Basis functions is adopted to approximate the unknown system function and value function. Based on the approximation, a data-driven optimal approach is proposed to obtain the unknown coefficients of the basis functions. A numerical example is proposed to demonstrate the effectiveness of this method.
仿射非线性系统的数据驱动微分对策
针对非线性仿射系统的二人微分对策问题,提出了一种基于差分动态规划的数据驱动优化方法。利用试验数据,将Hamilton-Jacobi-Isaacs (HJI)方程展开为一组高阶微分方程。采用基函数逼近未知的系统函数和值函数。在此基础上,提出了一种数据驱动的优化方法来获取基函数的未知系数。通过数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信