Wind Turbine Fault Classification Using Support Vector Machines with Fuzzy Logic

Colton Seegmiller, Blake Chamberlain, Jordan Miller, Mohammed A.S. Masoum, Mohammad Shekaramiz
{"title":"Wind Turbine Fault Classification Using Support Vector Machines with Fuzzy Logic","authors":"Colton Seegmiller, Blake Chamberlain, Jordan Miller, Mohammed A.S. Masoum, Mohammad Shekaramiz","doi":"10.1109/ietc54973.2022.9796919","DOIUrl":null,"url":null,"abstract":"Rapid and accurate identification of faults on wind turbine blades is important to ensure the continued operation of wind power generation systems. This paper explores the implementation of Support Vector Machines (SVM) combined with fuzzy logic for image recognition and fault classification of wind turbine blades. We discuss the concept, ideas, and implementation of SVM for image recognition, and the final result is to implement these features into a system for detecting the various cracks and damages on the blades of wind turbines using a scale model. The final system will be tested on a scale model of a wind turbine blade. We will focus on what SVM is, what the crossover between SVM and fuzzy may look like, and how it will effectively be able to detect cracks in the blades of wind turbines.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rapid and accurate identification of faults on wind turbine blades is important to ensure the continued operation of wind power generation systems. This paper explores the implementation of Support Vector Machines (SVM) combined with fuzzy logic for image recognition and fault classification of wind turbine blades. We discuss the concept, ideas, and implementation of SVM for image recognition, and the final result is to implement these features into a system for detecting the various cracks and damages on the blades of wind turbines using a scale model. The final system will be tested on a scale model of a wind turbine blade. We will focus on what SVM is, what the crossover between SVM and fuzzy may look like, and how it will effectively be able to detect cracks in the blades of wind turbines.
基于模糊逻辑的支持向量机风电机组故障分类
快速准确地识别风机叶片故障对保证风力发电系统的持续运行具有重要意义。本文探讨了将支持向量机与模糊逻辑相结合的方法应用于风电叶片的图像识别与故障分类。我们讨论了用于图像识别的支持向量机的概念、思路和实现,最终的结果是将这些特征实现到一个系统中,用于使用比例模型检测风力涡轮机叶片上的各种裂纹和损伤。最终的系统将在风力涡轮机叶片的比例模型上进行测试。我们将重点关注支持向量机是什么,支持向量机和模糊之间的交叉可能是什么样子,以及它如何有效地检测风力涡轮机叶片的裂纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信